
CONTAMINATION ASSESSMENT

Endeavour Energy Occupied Area 221-227 and 289-311 Luddenham Road, Orchard Hills NSW

Prepared for Co-ordinated Infrastructure

23 October 2024

Ref: DRM P23.1039.V13-R03

Prepared for	Co-ordinated Infrastructure
Report Title	Contamination Assessment
Site	Endeavour Energy Occupied Area 221-227 and 289-311 Luddenham Road, Orchard Hills NSW
File Reference	DRM P23.1039.V13-R03
Date	23 October 2024

Development Risk Management Pty Ltd
ABN 60 648 798 878
ACN 648 798 878
+61 450 715 562
Suite 7, 265-271 Pennant Hills Road, Thornleigh NSW 2120

DOCUMENT HISTORY & DISTRIBUTION

Version	Date	Author	Reviewer	Distributed to
Final	23 October 2024	ober 2024 Dilanka Premadasa Nalin de Silva		George Henien of Co-ordinated Infrastructure

Development Risk Management Pty Ltd

Copyright in the whole and every part of this document belongs to Development Risk Management Pty Ltd and may not be used, sold, transferred, copied or reproduced in whole or in part in any manner or form or in or on any media to any person other than by agreement with Development Risk Management Pty Ltd.

This document is produced by Development Risk Management Pty Ltd solely for the benefit and use by the client in accordance with the terms of the engagement. Development Risk Management Pty Ltd does not and shall not assume any responsibility or liability whatsoever to any third party arising out of any use or reliance by any third party on the content of this document.

LIMITATIONS AND GENERAL NOTES

LIMITATIONS

The report was prepared in accordance with the scope agreed between **Development Risk Management Pty Ltd (DRM)** and the client. The scope of services was agreed to with due consideration of a range of factors including time, budget, access and site constraints. The report is provided for the specific purpose as described in the report. The report may not contain sufficient information for purposes other than that described in the report.

The information in this report is considered accurate at the date of issue.

In preparing the report, DRM has relied upon information provided by the Client and/or their Agents. Such data may include surveys, analyses, designs, maps and plans. DRM has not verified the accuracy or completeness of the data except as stated in this report.

The contents of this document are and remain the intellectual property of DRM. This document should only be used for the purpose for which it was commissioned and should not be used for other purposes or by other parties, unless expressly authorised by DRM. This report shall not be reproduced either totally or in part without the permission of DRM. Where information from this report is to be included in contract documents or engineering specification for the project, the entire report should be included in order to minimise the likelihood of misinterpretation.

Unless otherwise stated, the report, or sections of the report, should not be used as part of a specification for a project, without review and agreement by DRM.

The report must be read in its entirety and should be kept in its entirety without separation of individual pages or section or attachments.

DRM cannot be held responsible for interpretations or conclusions from review by others of this report or test data, which are not otherwise supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

GENERAL NOTES

Geotechnical and environmental reporting relies on the interpretation of factual information based on judgment and opinion and is far less exact than other engineering or design disciplines due to a range of uncertainties and variabilities. Geotechnical and environmental reports are for a specific purpose, development and site as described in the report and may not contain sufficient information for other purposes, developments or sites (including adjacent sites) other than that described in the report.

Subsurface conditions can change with time and can vary between test locations. Therefore, actual conditions in areas not sampled may differ from those predicted since no subsurface investigation, no matter how comprehensive, can reveal all subsurface details and anomalies. Anthropogenic impact and natural causes can also affect subsurface conditions and thus the continuing adequacy of these reports. Seasonal variations can also affect subsurface conditions. DRM should be kept informed of any such events and should be retained to identify variances, conduct additional tests if required, and recommend solutions to problems encountered on site.

Data obtained from nominated discrete locations, subsequent laboratory testing and empirical or external sources are interpreted by trained professionals in order to provide an opinion about overall site conditions, their likely impact with respect to the report purpose and recommended actions in accordance with any relevant industry standards, guidelines or procedures.

Contents

Limit	ations	and Gen	eral Notes	ii
1.	Intro	duction		1
	1.1. 1.2. 1.3.	Backgro Objectiv Scope o	ives	1 1 1
2.	Resu	lts		2
	2.1.		p Review	2
		2.1.1.	Geology	2
			Acid Sulphate Soils	2
			Aerial Image Review	2
	2.2.		oservations	2
	2.3.	Sub-Sur	rface Conditions	3
		2.3.1.	Site Specific Geology	3
		2.3.2.		5
			Other Evidence of Contamination	5
	2.4.	Analytic	cal Results	5
	2.5.	Quality	Assurance	6
3.	Discu	ussion		6
	3.1.	Potentia	ial for Contamination	6
	3.2.	Site Suit	itability For Proposed Land Use	6
4.	Conc	lusions a	and Recommendations	7
5.	Refe	rences _		8

Figures

Figure 1	Site Locality Plan
Figure 2	Site Layout Plan
Figure 3	Sample Location Plan

Tables

Table 1	Asbestos Field Screening and Analytical Results
Table 2	Soil Analytical Results
Table 3	Relative Percentage Difference

Appendices

Appendix A	Test pit Logs
Appendix B	Laboratory Analytical Certificates

1. INTRODUCTION

1.1. Background

Development Risk Management Pty Ltd (DRM) was engaged by Co-ordinated Infrastructure (the client) to undertake a Contamination Assessment for the for the portion of the land located at west of the existing electrical substation at 221-227 and 289-311 Luddenham Road, Orchard Hills, NSW (the property). The assessment area shown in <u>Figure 1</u> will be referred to as "the site" from here on. Based on the information provided by client, DRM understood the following:

- ▲ The site is a portion of the property proposed to be developed for commercial/industrial land use (Alspec Industrial Business Park), with the development application for the earthworks under review by Penrith City Council;
- ▲ A stage 1 preliminary site investigation (CS, 2021)¹ and stage 2 detailed site investigation (CS, 2021a)² did not identify unacceptable contamination at the site;
- ▲ The site is currently occupied by Endeavour Energy³;
- ▲ Penrith City Council has reviewed the final validation report (DRM, 2024)⁴ and advised that.

"...A review of the Final Validation Report identifies the area occupied by Endeavour Energy to the west of the existing switch station. A review of the civil plans indicates that works are proposed within the area identified as occupied by Endeavour Energy. The Final Validation Report mentions this area is used for equipment storage and stockpiling of soil and aggregates.

Should this area be located within the area of proposed works the application will need to demonstrate that the land is suitable for its intended purpose in relation to land contamination."

This contamination assessment was conducted to assess the suitability of the site for the proposed land use.

1.2. Objectives

The objectives of this project were to:

- Assess the potential for contamination to be present at the site from usage by Endeavour energy;
- Assess the contamination status of the site;
- Assess the suitability of the site, in the context of land contamination, for the proposed industrial land use; and
- Provide recommendations for supplementary investigations, contamination management, or remedial works.

1.3. Scope of Work

The scope of work undertaken to address the project objectives included:

- Review of geological and topographic maps and a selection of aerial photographs for the site;
- ▲ A walkover of the site followed by excavation of eight test pits (TP801, TP802, TP804 to TP808) using a 15 tonne excavator to a maximum depth of 0.9m bgl and one test pit (TP803) using hand tools to a maximum depth of 0.5mbgl;
- ▲ Soil sampling and laboratory analysis of selected samples for a range of contaminants including metals, TRH/BTEX, PAH and asbestos. The sampling point location plan is presented in Figure 3; and
- ▲ Data assessment and reporting.

Contamination Assessment - Endeavour Energy Occupied Area 221-227 and 289-311 Luddenham Road, Orchard Hills NSW

¹ CS, 2021. "Stage 1 Preliminary Site Investigation 221-227 and 289-311 Luddenham Road, Orchard Hill, NSW, 2748" (ref: 5046200067-R01-rev01, dated 9 July 2021)

² CS, 2021a. "Stage 2 Detailed Site Investigation 221-227 And 289-311 Luddenham Road, Orchard HILLS, NSW, 2748" (Ref: 10791EV.P.68-R04, dated 10 February 2021)

³ Though DRM notes that Endeavour Energy was in the process of vacating the site on the day of the field investigation for this contamination assessment (09 October 2024)

⁴ DRM, 2024. "Final Validation Report, 221-227 & 289-311 Luddenham Rd, Orchard Hills, NSW" (ref: DRM P23.1039-R05r1 dated 23 August 2024)

The scope of works was undertaken with reference to the relevant sections of NEPC (2013), NSW EPA (2020b) and WA DOH (2021).

2. RESULTS

2.1. Desktop Review

2.1.1. Geology

The Department of Mineral Resources Geological Survey of NSW Penrith 1:100,000 Geological Series Sheet 9030 (Edition 1) 1991, indicated that the site is likely to be underlain by Triassic-aged Ashfield Shale of the Wianamatta Group. This formation comprises shale, carbonaceous claystone, claystone, laminate, fine to medium-grained lithic sandstone, rare coal and tuff.

2.1.2. Acid Sulphate Soils

A review of the <u>NSW Government's ESPADE website</u>, indicated that, the site is not mapped as having acid sulphate soil risks.

2.1.3. Aerial Image Review

DRM reviewed the indexed aerial images readily accessible via <u>NSW Government Spatial Data Services web page</u> and aerial images provided by MetroMaps. The review indicated the following:

- ▲ From 1947 to 1975 the site appears to be vacant;
- After 1975 the site appears to be used for rural agricultural purpose;
- ▲ The site appears to be occupied by Endeavor Energy (EE) after 2022, during the construction of the electrical substation.at eastern side. There is evidence of heavy machinery storage, parking, stockpiling of soils and storage of construction materials; and
- A sedimentation pond was present at the central east portion.

2.2. Site Observations

DRM conducted a site walkover on 09 October 2024.

The site was fenced and well maintained. The entrance is from the northern boundary. Compacted road base material was present at the northern and central portion of the site. Fill material at the southeastern portion had been scraped at the time of the site walkover, which we understood, from Endeavour Energy personnel, was in preparation for vacating the site. The ground surface of the remaining area was covered with either road base materials or clay. Heavy machinery and vehicles were parked at the site. Stockpiles of construction materials (gravel, sand, etc.) were located along the western portion of the site, but some of these were being removed at the time of site walkover.

The sedimentation pond was understood to have been backfilled with the material that was excavated to create it.

The general layout and current site features are presented in Figure 2.

2.3. Sub-Surface Conditions

2.3.1. Site Specific Geology

Observations made of soils encountered during intrusive investigation works were recorded on logs, which are presented in <u>Appendix A</u>.

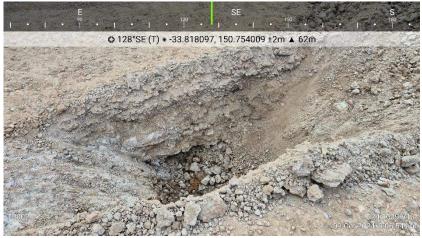
North and central portion of the site were comprised of highly compacted road base material to a depth of approximately 0.3m (bgl), which was apparently placed by Endeavour Energy. The road base filling was underlain by a layer of gravelly fill mixed with demolition rubble.

The south and southwestern portions of the site comprised of a 0.3m thick layer of gravelly clay fill, and was underlain by natural clay (orange brown clay with medium plasticity). The gravelly clay fill material was underlain by dark brown topsoil in two test pits (TP803 and TP806).

Representative photographs are presented below. All photographs during field work can be accessed via DRM SharePoint.

Photograph 4.2.1-1 Looking north from the middle of the site

Photograph 4.2.1-2 Looking south from the middle of the site


Photograph 4.2.1-3 Scraped fill material at the southeastern corner of the site

Photograph 4.2.1-4 Construction material stockpiles along the western portion of the site

Photograph 4.2.1-5 Excavated test pit at TP801

Photograph 4.2.1-6 Field screening at test pit TP804

2.3.2. Potential Asbestos Containing Materials

No visual evidence of asbestos containing materials (ACM) were encountered or observed during the inspection and field work. However, demolition rubble, which can be an indicator of asbestos, were observed in four test pits (TP801, TP802, TP804 and TP805), underlying the fill materials placed by Endeavor Energy.

The bulk 10L soil samples collected from test pits TP801, TP802, TP804 and TP805 were screened on site for the presence of asbestos containing material greater than 7mm in size, in accordance with the procedure specified in the NEPM (NEPC, 2013). Potential ACM were not identified during the screening.

The results of the asbestos field screening are presented in Table T1.

2.3.3. Other Evidence of Contamination

Olfactory or visual evidence of contamination (odours, sheens, discolorations or stains for example) were not observed during the excavation of test pits.

2.4. Analytical Results

DRM conducted analysis of selected samples for typical contaminants of concern, as shown on the table below, at a NATA accredited laboratory.

Tuble 2.4-1 Alluly	licul schedule						
AEC	Sampling Point ID	ткн / втех	РАН	OCP/PCB	Metals (8)	Asbestos (ID)	Asbestos (0.001%)
Northern portion of the site with compacted road base material	TP801, TP802, TP804	3	1	1	4	-	3
Southeastern portion of the site scraped with potentially filled soil	TP806, TP808	2	1	1	2	-	1
General coverage	TP803, TP805, TP807	2	-	-	3	-	2

Table 2.4-1 Analytical Schedule

The analytical results for the samples analysed are presented in <u>Table T2</u>. The laboratory analytical certificates are attached in <u>Appendix B</u>.

Analytical results indicated that:

- Asbestos was not detected in the samples analysed;
- ▲ The concentration of BTEX, OCP and PCB were less than the laboratory limit of reporting (LOR); and
- ▲ The concentration of TRH, PAH and heavy metals were less than the adopted Health Investigation Levels (HIL D) and Ecological Investigation levels (EILs).

2.5. Quality Assurance

The assessment was conducted in accordance with industry standards and in general accordance with the NEPM (NEPC, 2013).

The fieldwork tasks were undertaken by suitably experienced field staff. Samples were collected from relevant sampling points using a fresh pair of disposable nitrile gloves. Samples were labelled and preserved in ice and transported under chain of custody protocols to be analysed by a NATA accredited laboratory.

Review of the laboratory QAQC reports did not identify significant issues that would preclude the data from being useable for this assessment.

Based on the above, DRM considers that the data is suitable for the purpose of this assessment.

3. DISCUSSION

3.1. Potential for Contamination

The site observations and the testing conducted did not identify unacceptable contamination. The activities conducted by Endeavour Energy do not appear to have potential to cause significant contamination. Based on observations, intrusive assessment and the analytical results, DRM considers that the potential for the site to contain significant unacceptable contamination at the site is low.

This contamination assessment was limited to the soils underlying the fill materials placed on the site by Endeavour Energy. DRM has been informed that fill layer placed across the site by Endeavour Energy is to be removed offsite prior to vacating the site. Regardless, DRM considers that the fill materials placed across the site by Endeavour Energy is unlikely to contain unacceptable contamination.

Whilst the field screening and laboratory analysis did not identify asbestos in the fill materials (that contained demolition rubble) underlying the fill placed by Endeavour Energy, the potential for isolated fragments of asbestos to be encountered during future development works cannot be precluded. Such instances (if any) should be managed in accordance with the unexpected finds protocol (UFP) prepared by CS (2021)⁵.

3.2. Site Suitability For Proposed Land Use

DRM considers that the site is suitable for the proposed industrial land use.

⁵ CS, 2021b. Bulk Earthworks Phase Unexpected Finds of Contamination in Soil Management Protocol for Portion of Lot 1, DP1099147 and Lot 242, DP1088991' 221-227 and 289-317 Luddenham Road, Orchard Hills, NSW, ref: 10791EV.P.68-R09 dated 15 March 2021

4. CONCLUSIONS AND RECOMMENDATIONS

Based on the assessment of desktop review information, field observations and analytical results, DRM makes the following conclusions:

- ▲ The potential for significant unacceptable contamination to be present in the soils underlying the fill material placed across the site by Endeavour Energy is low. However, the potential to encounter isolated patches of contamination (asbestos) cannot be precluded. The fill materials placed across the site by Endeavour Energy will be removed offsite prior to vacating the site by Endeavour Energy. This should be confirmed by observation; and
- ▲ The site is suitable for the proposed industrial land use, from contamination perspective.

If isolated patches of contamination (asbestos for example) is encountered on site during earthworks, these should be managed in accordance with the Unexpected Finds Protocol (CS, 2021b).

This report must be read in conjunction with the *Limitations and General Notes* page at the front of this report.

5. **REFERENCES**

CS, 2021. "Stage 1 Preliminary Site Investigation 221-227 and 289-311 Luddenham Road, Orchard Hill, NSW, 2748" (ref: 5046200067-R01-rev01, dated 9 July 2021)

CS, 2021a. "Stage 2 Detailed Site Investigation 221-227 AND 289-311 LUDDENHAM ROAD, ORCHARD HILLS, NSW, 2748" (Ref: 10791EV.P.68-R04, dated 10 February 2021)

CS 2021b, "Bulk Earthworks Phase Unexpected Finds of Contamination in Soil Management Protocol" for Portion of Lot 1, DP1099147 and Lot 242, DP1088991' 221-227 and 289-317 Luddenham Road, Orchard Hills, NSW, ref: 10791EV.P.68- R09 dated 15 March 2021.

DRM, 2024. "Final Validation Report, 221-227 & 289-311 Luddenham Rd, Orchard Hills, NSW" (ref: DRM P23.1039-R05r1 dated 23 August 2024)

National Environment Protection Council (NEPC) 2013a, 'Schedule B(1) Guideline on Investigation Levels for Soil and Groundwater', National Environment Protection (Assessment of Site Contamination) Measure (NEPM) as amended in May 2013.

National Environment Protection Council (NEPC) 2013b, 'Schedule B(2) Guideline on Site Characterisation', National Environment Protection (Assessment of Site Contamination) Measure (NEPM) as amended in May 2013.

National Environment Protection Council (NEPC) 2013c, 'Schedule B(4) Guideline on Site-Specific Health Risk Assessment Methodology', National Environment Protection (Assessment of Site Contamination) Measure (NEPM) as amended in May 2013.

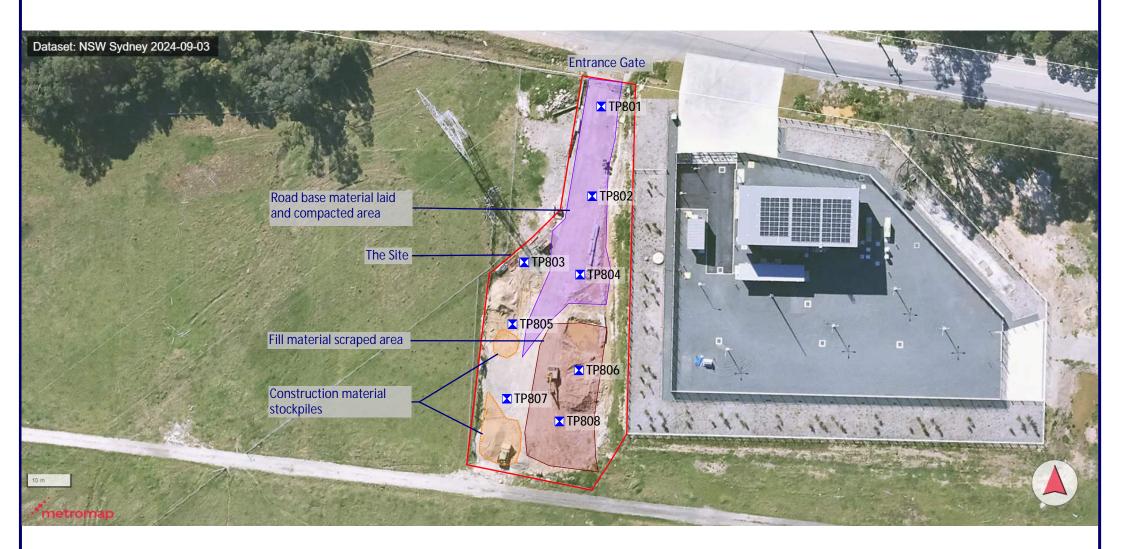
National Environment Protection Council (NEPC) 2013d, 'Schedule B(6) Guideline on The Framework for Risk-Based Assessment of Groundwater Contamination', National Environment Protection (Assessment of Site Contamination) Measure (NEPM) as amended in May 2013.

National Environment Protection Council (NEPC) 2013e, 'Schedule B(7) Guideline on Derivation of Health-Based Investigation Levels', National Environment Protection (Assessment of Site Contamination) Measure (NEPM) as amended in May 2013.

NSW EPA 2020b, 'Contaminated Land Guidelines: Consultants reporting on contaminated land' dated May 2020, ref: EPA2020P2233.

WA DOH 2021, 'Guidelines for the Assessment, Remediation and Management of Asbestos Contaminated Sites in Western Australia', dated August 2021.

FIGURES



	Legend		Scale: ◀ 250 m►	Client:	HBB Property Pty Ltd
	 Approximate Property Extent Approximate Site Extent 		Date: 27 October 2024	Project:	Contamination Assessment
N			Drawn By: DP	Location:	221-227 and 289-311 Luddenham Road, Orchard Hills
		Development Risk Management Pty Ltd	Drawing Number: P23.1039.V13-R03.F1	Title:	Figure 1 - Site Location Plan

TABLES

Table T1

Screening Results and Laboratory Results for Asbestos Contamination Assessment - Endeavour Energy Occupied Area 221-227 And 289-311 Luddenham Road, Orchard Hills, NSW

	Field Screening for Bonded Asbestos						Laborato	Laboratory Analysis		
San	nple ID	Mass of Soil in 10L bucket (Kg)	ACM Present in 10L?	Mass of ACM? (g)	PACM/ACM	% of Bonded Asbestos In Soil	% of ACM Reported by the lab	% of AF/FA Reported by Lab		
TP801	0.3 - 0.8	21.8	NO	-	-	-	NAD	NAD		
TP802	0.3 - 0.8	20.7	NO	-	-	-	NAD	NAD		
TP803	0.1 - 0.3	Field screening no	Field screening not conducted due to no ACM or demolition rubble observed				NA	NA		
TP804	0.3 - 0.6	20.7	NO	-	-	-	NAD	NAD		
TP805	0.3 - 0.6	19.7	NO	-	-	-	NAD	NAD		
TP806	0.2 - 0.4	Field screening no	ot conducted due to no ACM o	r demolition rubble observed	-	-	NA	NA		
TP807	0.3 - 0.5	Field screening no	ot conducted due to no ACM o	or demolition rubble observed	-	-	NAD	NAD		
TP808	0.3 - 0.5	Field screening no	ot conducted due to no ACM o	r demolition rubble observed	-	-	NAD	NAD		

NAD - No Asbestos Detected

NA - Not Analysed

Table T2Soil Analytical Results - Endeavour Energy Occupied Area221-227 And 289-311 Luddenham Road, Orchard Hills, NSW

	Units	LOR	HIL D	EILs	TP801_0.3-0.5	TP801_0.8-0.9	TP802_0.6-0.8	TP803_0.1-0.3	TP804_0.4-0.6	TP805_0.3-0.5	TP806_0.2-0.4	TP807_0.3-0.5	TP808_0.3-0.5	DUP1
BTEX					9/10/2024	9/10/2024	9/10/2024	9/10/2024	9/10/2024	9/10/2024	9/10/2024	9/10/2024	9/10/2024	9/10/2024
	mg/kg	0.1	4	65	<0.1		-0.1		-0.1	-0.1	-0.1	-0.1	<0.1	
Benzene	mg/kg	0.1	~	125	<0.1		<0.1		<0.1	<0.1	<0.1	<0.1 <0.1		
Toluene	mg/kg	0.1		125	<0.1		<0.1		<0.1	<0.1	<0.1		<0.1	
Ethylbenzene		0.1		45			<0.1		<0.1	<0.1	<0.1	<0.1	<0.1	
Total Xylenes	mg/kg	0.3		45	<0.3		<0.3		<0.3	<0.3	<0.3	<0.3	<0.3	
Total Recoverable Hydrocarbons														
TRH C6-C10 minus BTEX (F1)	mg/kg	25	310	180	<25		<25		<25	<25	<25	<25	<25	
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	1000	120	<25		<25		<25	<25	<25	<25	<25	
TRH >C16-C34 (F3)	mg/kg	90	5000	1300	<90		96		<90	<90	540	<90	<90	
TRH >C34-C40 (F4)	mg/kg	120	10000	5600	<120		<120		<120	<120	650	<120	<120	
Polycyclic Aromatic Hydrocarbons														
Benzo(a)pyrene	mg/kg	0.1		0.7	<0.1		<0.1		<0.1	<0.1	0.6	<0.1	<0.1	
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>40</td><td></td><td><0.3</td><td></td><td><0.3</td><td></td><td><0.3</td><td><0.3</td><td>0.8</td><td><0.3</td><td><0.3</td><td></td></lor=lor<>	TEQ (mg/kg)	0.3	40		<0.3		<0.3		<0.3	<0.3	0.8	<0.3	<0.3	
Total PAH (18)	mg/kg	0.8	400		<0.8		<0.8		<0.8	<0.8	6.2	<0.8	<0.8	
Organochlorine Pesticides														
Total OC VIC EPA	mg/kg	1			<1						<1			
Polychlorinated Biphenyls														
Total PCBs (Arochlors)	mg/kg	1	7		<1						<1			
Heavy Metals														
Arsenic, As	mg/kg	1	3000	160	2	4	2	5	<1	2	3	7	5	6
Cadmium, Cd	mg/kg	0.3	900		<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	3600	310-660	14	22	8.8	25	5.7	8.4	12	18	17	19
Copper, Cu	mg/kg	0.5	240000	85-340	7	4.9	5.1	2.4	1.5	8.1	18	14	6.6	5.4
Lead, Pb	mg/kg	1	1500	1800	12	9	10	15	7	9	8	15	14	16
Nickel, Ni	mg/kg	0.5	600	55-960	4.3	2.2	4.9	2	3.7	5.1	6.6	6.1	4.2	3.6
Zinc, Zn	mg/kg	2	400000	100-2000	32	5.7	37	5.9	24	38	27	24	5.9	6.8
Mercury	mg/kg	0.05	730		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Asbestos														
Asbestos (AS4964 method 0.01%)		0.01			NAD	NA	NAD	NA	NAD	NAD	NA	NAD	NAD	
HILs - Human Health Investigation levels for com	nmercial/industrial land u													

EILs - Ecological Investigation levels for commercial/industrial land use

NAD - No Asbestos Detected

-- - Not analysed

Table T3

Soil Analytical Results - Relative Percentage Difference - Endeavour Energy Occupied Area 221-227 And 289-311 Luddenham Road, Orchard Hills, NSW

	Units	LOR	HIL D	EILs	TP808_0.3-0.5	Intra lab duplicate DUP1	RPD
					9/10/2024	9/10/2024	
Heavy Metals							
Arsenic, As	mg/kg	1	3000	160	5	6	18%
Cadmium, Cd	mg/kg	0.3	900		<0.3	<0.3	NA
Chromium, Cr	mg/kg	0.5	3600	310-660	17	19	11%
Copper, Cu	mg/kg	0.5	240000	85-340	6.6	5.4	20%
Lead, Pb	mg/kg	1	1500	1800	14	16	13%
Nickel, Ni	mg/kg	0.5	600	55-960	4.2	3.6	15%
Zinc, Zn	mg/kg	2	400000	100-2000	5.9	6.8	14%
Mercury	mg/kg	0.05	730		<0.05	<0.05	NA
Asbestos							
Asbestos (AS4964 method 0.01%)		0.01			NAD	-	-
HILs - Human Health Investigation levels for co	mmercial/industrial land	use					

EILs - Ecological Investigation levels for commercial/industrial land use

NAD - No Asbestos Detected

Appendix A Test pit Logs

	DEVELOP	MENT RISK MAN	IAGEMENT					Testpit No: TP801							
JTM _atitude _ongitude Elevation Fotal Depth	: 15 : 37	3.817931 0.754477 .36(m)	Excavator Supplier Logged By Reviewed By		: Dilanka Premadasa RA/NDS		Job Numb Client Project Location Loc Comm	: : (: :	HB&B Contar	039.V13 Property Pty Ltd mination Assessment - Endeavour Energy Occupied Area 7 Luddenham Road, Orchard Hills NSW, Australia					
Drilling Method	Depth (m)	Graphic Log	Classification Code	Material Description		Moisture	Consistency	Sam	ples m	Remarks & Other Observations					
-			GW		edium to coarse sized, fine to rown grey, road base material.	D	L								
			GW		o coarse sized, with fine to mediur ay, with sandstone and demolition	m D	MD F								
				TP801 Te	rminated at 0.9m										

	EVELOP	<mark>ment risk man</mark>	IAGEMENT			Testpit No: TP802							
JTM .atitude .ongitude Elevation Fotal Depth	: 15 : 46	3.813596 0.752122 .27(m)		Excavator : 5T Excavator Supplier : Logged By : Dilanka Premadasa Reviewed By : RA/NDS Date : 09/10/2024		Job Number Client Project Location Loc Comment		 P23.1039.V13 HB&B Property Pty Ltd Contamination Assessment - Endeavour Energy Occup 221-227 Luddenham Road, Orchard Hills NSW, Australiant: 					
Drilling Method	Depth (m)	Graphic Log	Classification Code	Material Description	Moisture	Consistency	Sam	ples m	Remarks & Other Observations				
-			GW	Fill: Sandy GRAVEL: medium to coarse sized, fine to medium grained sand, brown grey, road base material.	D								
			GW	Fill: GRAVEL: medium to coarse sized, with fine to medium grained sand, brown grey, with sandstone and demolition rubble .	D	F							
			CI	CLAY: medium plasticity, orange brown.	W	F							
				TP802 Terminated at 0.9m									

	VELOPN	NENT RISK MAN	IAGEMENT			Testpit No: TP803								
Latitude Longitude	: 150 : 37.3	.817923).754472 36(m)		Excavator : Hand Tools Excavator Supplier : Logged By : Dilanka Premadasa Reviewed By : RA/NDS Date : 09/10/2024	: : Dilanka Premadasa : RA/NDS		: Contan	39.V13 Property Pty Ltd nination Assessment - Endeavour Energy Occupied Area 7 Luddenham Road, Orchard Hills NSW, Australia						
рс	Depth (m)	Graphic Log	Classification Code	Material Description	Moisture	Consistency	Samples	Remarks & Other Observations						
			CI	Fill: Gravelly CLAY: medium plasticity, medium sized grav red brown, mixed with road base material and constructio materials .		F								
			CL-CI	CLAY: low to medium plasticity, dark brown, topsoil.	W	F								
			CI	CLAY: medium plasticity, orange brown.	М	F								
				TP803 Terminated at 0.5m										

	DEVELOP	MENT BISK MAN	IAGEMENT					Testpit No: TP804					
	: 56H : -33.813596 : 150.752122 : 46.27(m) :h : 0.7 m			Excavator: 5TExcavator Supplier:Logged By: Dilanka PremadasaReviewed By: RA/NDSDate: 09/10/2024	a Premadasa IS		ct : Cor		39.V13 Property Pty Ltd nination Assessment - Endeavour Energy Occupied Area 7 Luddenham Road, Orchard Hills NSW, Australia				
Drilling Method	Depth (m)	Graphic Log	Classification Code	Material Description	Moisture	Consistency	Sam っ	ples m	Remarks & Other Observations				
-			GW	Fill: Sandy GRAVEL: medium to coarse sized, fine to medium grained sand, brown grey, road base material.	D	L	L						
_			GW	Fill: GRAVEL: medium to coarse sized, with fine to medium grained sand, brown grey, with sandstone and demo rubble	D .	MD							
			CI	CLAY: medium plasticity, orange brown.	w	F							
_				TP804 Terminated at 0.7m									

	DEVELOP	MENT RISK MAN	IAGEMENT			Testpit No: TP805						
UTM Latitude Longitude Elevation Total Depti	: 15 : 37	3.818088 0.753891 .61(m)		Excavator : 5T Excavator Supplier : Logged By : Dilanka Premadasa Reviewed By : RA/NDS Date : 09/10/2024		Job Numb Client Project Location Loc Comm	: : (: :	HB&B Contar	39.V13 Property Pty Ltd nination Assessment - Endeavour Energy Occupied Area 7 Luddenham Road, Orchard Hills NSW, Australia			
Drilling Method	Depth (m)	Graphic Log	Classification Code	Material Description	Moisture	Consistency	Sam っ	ples m	Remarks & Other Observations			
-			GW	Fill: Sandy GRAVEL: medium to coarse sized, fine to medium grained sand, brown grey, road base material.	D	L						
-			GW	Fill: GRAVEL: medium to coarse sized, with fine to medium grained sand, brown grey, with sandstone and demolition rubble .	D	MD						
			CI	CLAY: medium plasticity, orange brown.	w	F						
-		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		TP805 Terminated at 0.7m								

	EVELOPI	MENT RISK MAN	AGEMENT			Testpit No: TP806								
UTM Latitude Longitude Elevation Total Depth	: -33 : 15 : 37.			Excavator : 5T Excavator Supplier : Logged By : Dilanka Premadasa Reviewed By : RA/NDS Date : 09/10/2024			Job Numbe Client Project Location Loc Comm	per : P23.1039.V13 : HB&B Property Pty Ltd : Contamination Assessment - Endeavour Energy Occupied Ard : 221-227 Luddenham Road, Orchard Hills NSW, Australia ment :						
Drilling Method	Depth (m)	Graphic Log	Classification Code	Ma	terial Description	Moisture	Consistency	Samples	Remarks & Other Observations					
			CI		lium plasticity, medium sized gravel, bad base material and construction	D	F							
_			CI	CLAY: medium plasticity	r, dark brown, topsoil.	M	F		poly bag beneath the fill layer					
			CI	CLAY: medium plasticity	, brown.	w	F							
				TP806 Te	rminated at 0.5m									

	DEVELOP	MENT RISK MAN	IAGEMENT					Т	estpit No: TP807			
UTM Latitude Longitude Elevation Total Depti	: 15 : 46	3.813596 0.752122 .27(m)		Excavator: 5TExcavator Supplier:Logged By: Dilanka PremadasaReviewed By: RA/NDSDate: 09/10/2024	er : : Dilanka Premadasa : RA/NDS		: I : (r : P23.1039.V13 : HB&B Property Pty Ltd : Contamination Assessment - Endeavour Energy Occupie : 221-227 Luddenham Road, Orchard Hills NSW, Australia ent :				
Drilling Method	Depth (m)	Graphic Log	Classification Code	Material Description	Moisture	Consistency	Sam っ	ples m	Remarks & Other Observations			
_			GW	Fill: Sandy GRAVEL: medium to coarse sized, fine to medium grained sand, brown grey, with road base material.	D	L						
			CI	Fill: CLAY: medium plasticity, red brown with grey mottled.	М	F						
-			CI	CLAY: medium plasticity, brown.	W	F						
-				TP807 Terminated at 0.7m								

	DEVELOPI	MENT RISK MAI	IAGEMENT					Т	estpit No: TP808			
	: 56H : -33.813596 : 150.752122 : 46.27(m) :h : 0.5 m			Excavator : 5T Excavator Supplier : Logged By : Dilanka Premadasa Reviewed By : RA/NDS Date : 09/10/2024		Job Numb Client Project Location Loc Comn	: : (:)	r : P23.1039.V13 : HB&B Property Pty Ltd : Contamination Assessment - Endeavour Energy Occupie : 221-227 Luddenham Road, Orchard Hills NSW, Australia ent :				
Drilling Method	Depth (m)	Graphic Log	Classification Code	Material Description	Moisture	Consistency	Sam ന	dND	Remarks & Other Observations			
_			CI	Fill: Gravelly CLAY: medium plasticity, medium sized grave red brown, mixed with road base material and construction materials .		F						
			CI	CLAY: medium plasticity, brown.	w	F						
				TP808 Terminated at 0.5m								

Appendix B

Laboratory Analytical Certificates

	ACEY	S	SUITE 7	10 / 90 GEOI	AUSTRALIAN SAFER ENVIRONMENT & TECHNOLOGY PTY L RGE STREET, HORNSBY NSW 2077 – PO BOX 1644 HORNSBY PHONE: (02) 9987 2183 FAX: (02)9987 2151 EMAIL: info@aus WEBSITE: www.Ausset.com.au	WESTF	IELD NS au	SW 1635	i	-	•		this T
					CHAIN OF CUSTODY RECORD								
ET JOE	BNO: ASET1217	35/124	915	11-18	Contact Name: Nalin De Silva								
	Company Name: DEVELOPI		And the second	ALL MARKEN AND STORE	Job No: DRM P23.1039.V13			F		-			
ress:	:: 37 Mount Pleasant Avenu	ie, Normanhurst I	NSW 20	76	Project Name: EE, Orchard Hills	le	Ţ	WA/ NEPM 500mL	ŧ				
					Purchase Order:	Material	Soil (+/-)	NEPI	e Count	ater	lst		
					Email Results to: rahabar_alam@drm.ltd	Ξ.	12.	WA/	Fibre	estos in Water	Asbestos in Dust	Analysis	
tact	Ph: 0450 715 562				results@drm.ltd	Asbestos	estos	estos	estos	estos	estos	Ana	
_	Sample ID	Date	Туре	Container	Sample Location	Asbe	Asbe	Asb	Asbi	Asb	Asb	Lead	
	TP801 0.3 - 0.8	9/10/2024	S	500ml Bag				X					
	TP802 0.3 - 0.8	9/10/2024	S	500ml Bag		1. 2. 2		X					
1.0	TP803 0.1 - 0.3	9/10/2024	S	500ml Bag					1.0				
-	TP804 0.3 - 0.6	9/10/2024	S	500ml Bag	States and the second second			X					
	11004 0.3 - 0.0						1 may 1	X					
	TP805 0.3 - 0.6	9/10/2024	S	500ml Bag		-							
		9/10/2024 9/10/2024	S S	500ml Bag 500ml Bag									
	TP805 0.3 - 0.6	-	S					x					
	TP805 0.3 - 0.6 TP806 0.2 - 0.4	9/10/2024	S S	500ml Bag				X X					
	TP805 0.3 - 0.6 TP806 0.2 - 0.4 TP807 0.3 - 0.5	9/10/2024 9/10/2024 9/10/2024	S S	500ml Bag 500ml Bag	Received By: 5P		Turn a		e		Shipment M	Method	
inqui	TP805 0.3 - 0.6 TP806 0.2 - 0.4 TP807 0.3 - 0.5 TP808 0.3 - 0.5	9/10/2024 9/10/2024 9/10/2024	S S	500ml Bag 500ml Bag	Received By: 5P Date & Time: 2:25 PM 10/10/24	Same Day	Turn a	X round tim		5 days	Shipment M	Method	

DECETWED 10 OCT 2024 SP

AUSTRALIAN SAFER ENVIRONMENT & TECHNOLOGY PTY LTD

ABN 36 088 095 112

Our ref : ASET121735 / 124915 / 1 – 6 Your ref : DRM P23.1039.V13 – EE, Orchard Hills NATA Accreditation No: 14484

14 October 2024

Development Risk Management Pty Ltd 37 Mount Pleasant Avenue Normanhurst NSW 2076

Accredited for compliance with ISO/IEC 17025 - Testing.

Dear Nalin

Asbestos Identification

Attn: Mr Nalin De Silva

This report presents the results of six samples, forwarded by Development Risk Management Pty Ltd on 10 October 2024, for analysis for asbestos.

1.Introduction:Six samples forwarded were examined and analysed for the presence of asbestos on 11 October 2024.

2. Methods: The samples were examined under a Stereo Microscope and selected fibres were analysed by Polarized Light Microscopy in conjunction with Dispersion Staining method (Australian Standard AS 4964 - 2004 and Safer Environment Method 1 as the supplementary work instruction) (Qualitative Analysis only).

The report also provides approximate weights and percentages, categories of asbestos forms appearing in the sample, such as **AF** (Asbestos Fines), **FA** (Friable Asbestos) and **ACM** (Asbestos Containing Material), also satisfying the requirements of the NEPM Guidelines.

3. Results : Sample No. 1. ASET121735 / 124915 / 1. TP801 - 0.3 - 0.8.

Approx dimensions 10.0 cm x 10.0 cm x 9.6 cm
Approximate total dry weight of soil = 1181.0 g.
The sample consisted of a mixture of sandy soil, stone, sandstone, brick-like pieces, plant matter and organic fibres.
No asbestos detected.

Sample No. 2. ASET121735 / 124915 / 2. TP802 - 0.3 - 0.8. Approx dimensions 10.0 cm x 10.0 cm x 9.9 cm Approximate total dry weight of soil = 1245.0 g. The sample consisted of a mixture of sandy soil, stone, sandstone, brick-like pieces, glass pieces, plant matter and organic fibres. No asbestos detected.

Sample No. 3. ASET121735 / 124915 / 3. TP804 - 0.3 - 0.6. Approx dimensions 10.0 cm x 10.0 cm x 9.5 cm Approximate total dry weight of soil = 1151.0 g. The sample consisted of a mixture of sandy soil, stone, sandstone, brick-like pieces, plant matter and organic fibres. No asbestos detected.

SUITE 710 / 90 GEORGE STREET, HORNSBY NSW 2077 – P.O. BOX 1644 HORNSBY WESTFIELD NSW 1635 PHONE: (02) 99872183 FAX: (02)99872151 EMAIL: info@ausset.com.au WEBSITE: www.Ausset.com.au

OCCUPATIONAL HEALTH & SAFETY STUDIES • INDOOR AIR QUALITY SURVEYS • HAZARDOUS MATERIAL SURVEYS • RADIATION SURVEYS • ASBESTOS SURVEYS ASBESTOS DETECTION & IDENTIFICATION • REPAIR & CALIBRATION OF SCIENTIFIC EQUIPMENT • AIRBORNE FIBRE & SILICA MONITORING

Sample No. 4. ASET121735 / 124915 / 4. TP805 - 0.3 - 0.6.

Approx dimensions 10.0 cm x 10.0 cm x 9.6 cm Approximate total dry weight of soil = 1179.0 g. The sample consisted of a mixture of sandy soil, stone, sandstone, plant matter and organic fibres.

No asbestos detected.

Sample No. 5. ASET121735 / 124915 / 5. TP807 - 0.3 - 0.5.

Approx dimensions 10.0 cm x 10.0 cm x 8.3 cm Approximate total dry weight of soil = 921.0 g. The sample consisted of a mixture of clayish sandy soil, stone, sandstone, plant matter and organic fibres.

No asbestos detected.

Sample No. 6. ASET121735 / 124915 / 6. TP808 - 0.3 - 0.5.

Approx dimensions 10.0 cm x 10.0 cm x 7.4 cm

Approximate total dry weight of soil = 825.0 g.

The sample consisted of a mixture of clayish sandy soil, stone, sandstone, plant matter and organic fibres.

No asbestos detected.

Reported by,

Mahen De Silva. BSc, MSc, Grad Dip (Occ Hyg) Occupational Hygienist / Approved Identifier. Approved Signatory

Accredited for compliance with ISO/IEC 17025 - Testing.

This report is consistent with the analytical procedures and reporting recommendations in the Western Australia Guidelines for the Assessment Remediation and Management of Asbestos contaminated sites in Western Australia and it also satisfies the requirements of the current NEPM Guidelines. NATA Accreditation does not cover the performance of this service.

Disclaimers;

The approx; weights given above can be used only as a guide. They do not represent absolute weights of each kind of asbestos, as it is impossible to extract all loose fibres from soil and other asbestos containing building material samples using this method. However above figures may be used as closest approximations to the exact values in each case. Estimation and/ or reporting of asbestos fibre weights in asbestos containing materials and soil is out of the Scope of the NATA Accreditation. NATA Accreditation only covers the qualitative part of the results reported. This weight disclaimer also covers weight / weight percentages if given.

ACM - Asbestos Containing Material - Products or materials that contain asbestos in an inert bound matrix such as cement or resin. Here taken to be sound material, even as fragments and not fitting through a 7mm X 7 mm sieve.

- -Includes asbestos free fibres, small fibre bundles and also ACM fragments that pass through a 7mm X 7 mm sieve.
- FA -Friable asbestos material such as severely weathered ACM, and asbestos in the form of loose fibrous material such as insulation products.
- ^ denotes loose fibres of relevant asbestos types detected in soil/dust.
- * denotes asbestos detected in ACM in bonded form.
- # denotes friable asbestos as soft fibro plaster, fragments of ACM smaller than 7mm which are considered as friable and / or highly weathered ACM that will easily crumble.
- λ denotes samples that have been analysed only in accordance to AS 4964 2004.

 Ω Sample volume criteria of 500mL have not been satisfied.

The results contained in this report relate only to the sample/s submitted for testing. Australian Safer Environment & Technology accepts no responsibility for whether or not the submitted sample/s is/are representative. Results indicating "No asbestos detected" indicates a reporting limit specified in AS4964 -2004 which is 0.1g/Kg (0.01%). Any amounts detected at assumed lower level than that would be reported, however those assumed lower levels may be treated as "No asbestos detected" as specified and recommended by A4964-2004. Trace / respirable level asbestos will be reported only when detected and trace analysis have been performed on each sample as required by AS4964-2004. When loose asbestos fibres/ fibre bundles are detected and reported that means they are larger handpicked fibres/ fibre bundles, and they do not represent respirable fibres. Dust/soil samples are always subjected to trace analysis except where the amounts involved are extremely minute and trace analysis is not possible to be carried out. When trace analysis is not performed on dust samples it will be indicated in the report that trace analysis has not been carried out due to the volume of the sample being extremely minute.

Estimation of asbestos weights involves the use of following assumptions;

Volume of each kind of Asbestos present in broken edges have been visually estimated and its been assumed that volumes remain similar throughout the binding matrix and those volumes are only approximate and not exact. Material densities have been assumed to be similar to commonly found similar materials and may not be exact.

All samples indicating "No asbestos detected" are assumed to be less than 0.001% for friable AF and FA portions detected and 0.01 % for ACM detected unless the approximate weight is given.

ANALYTICAL REPORT

Contact	Rahabar Alam	Manager	Shane McDermott
Client	DEVELOPMENT RISK MANAGEMENT PTY LTD	Laboratory	SGS Alexandria Environmental
Address	37 MOUNT PLEASANT AVENUE NORMANHURST NSW 2076	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	(Not specified)	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	rahabar_alam@drm.ltd	Email	au.environmental.sydney@sgs.com
Project	DRM P23.1039.V13-Orchard Hills	SGS Reference	SE272259 R0
Order Number	DRM P23.1039.V13	Date Received	9/10/2024
Samples	10	Date Reported	15/10/2024

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

SIGNATORIES

nN

Akheeqar BENIAMEEN Chemist

Dong LIANG Metals/Inorganics Team Leader

kinty

Ly Kim HA Organic Section Head

10 Shane MCDERMOTT

Laboratory Manager

Teresa NGUYEN Organic Chemist

> SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia f +61 2 8594 0499 www.sgs.com.au

ANALYTICAL RESULTS

SE272259 R0

VOC's in Soil [AN433] Tested: 10/10/2024

			TP801_0.3-0.5	TP802_0.6-0.8	TP804_0.4-0.6	TP805_0.3-0.5	TP806_0.2-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
			9/10/2024	9/10/2024	9/10/2024	9/10/2024	9/10/2024
PARAMETER	UOM	LOR	SE272259.001	SE272259.003	SE272259.005	SE272259.006	SE272259.007
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes*	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX*	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene (VOC)*	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			TP807_0.3-0.5	TP808_0.3-0.5
PARAMETER	UOM	LOR	SOIL - 9/10/2024 SE272259.008	SOIL - 9/10/2024 SE272259.009
Benzene	mg/kg	0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1
Total Xylenes*	mg/kg	0.3	<0.3	<0.3
Total BTEX*	mg/kg	0.6	<0.6	<0.6
Naphthalene (VOC)*	mg/kg	0.1	<0.1	<0.1

Volatile Petroleum Hydrocarbons in Soil [AN433] Tested: 10/10/2024

			TP801_0.3-0.5	TP802_0.6-0.8	TP804_0.4-0.6	TP805_0.3-0.5	TP806_0.2-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	9/10/2024 SE272259.001	9/10/2024 SE272259.003	9/10/2024 SE272259.005	9/10/2024 SE272259.006	9/10/2024 SE272259.007
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			TP807_0.3-0.5	TP808_0.3-0.5
			SOIL	SOIL
			9/10/2024	9/10/2024
PARAMETER	UOM	LOR	SE272259.008	SE272259.009
TRH C6-C9	mg/kg	20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25

TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 10/10/2024

			TP801_0.3-0.5	TP802_0.6-0.8	TP804_0.4-0.6	TP805_0.3-0.5	TP806_0.2-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
			9/10/2024	9/10/2024	9/10/2024	9/10/2024	9/10/2024
PARAMETER	UOM	LOR	SE272259.001	SE272259.003	SE272259.005	SE272259.006	SE272259.007
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	180
TRH C29-C36	mg/kg	45	54	68	<45	<45	520
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	500
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	96	<90	<90	540
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	650
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	700
TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	1200

			TP807_0.3-0.5	TP808_0.3-0.5
PARAMETER	UOM	LOR	SOIL - 9/10/2024 SE272259.008	SOIL - 9/10/2024 SE272259.009
TRH C10-C14	mg/kg	20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110
TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 10/10/2024

			TP801_0.3-0.5	TP802_0.6-0.8	TP804_0.4-0.6	TP805_0.3-0.5	TP806_0.2-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
PARAMETER	UOM	LOR	9/10/2024 SE272259.001	9/10/2024 SE272259.003	9/10/2024 SE272259.005	9/10/2024 SE272259.006	9/10/2024 SE272259.007
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.5
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.2
Fluoranthene	mg/kg	0.1	<0.1	0.2	<0.1	<0.1	1.1
Pyrene	mg/kg	0.1	<0.1	0.2	<0.1	<0.1	1.2
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.4
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.5
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.6
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.3
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.6
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.3
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.5
Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td>0.7</td></lor=0*<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	0.7
Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td>0.8</td></lor=lor*<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	0.8
Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td>0.8</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	0.8
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	6.2
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	6.2

			TP807_0.3-0.5	TP808_0.3-0.5
			SOIL	SOIL
		1.05	9/10/2024	9/10/2024
PARAMETER	UOM	LOR	SE272259.008	SE272259.009
Naphthalene	mg/kg	0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td></lor=0*<>	TEQ (mg/kg)	0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td></lor=lor*<>	TEQ (mg/kg)	0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8

OC Pesticides in Soil [AN420] Tested: 10/10/2024

			TP801_0.3-0.5	TP806_0.2-0.4
			SOIL	SOIL
			-	-
PARAMETER	UOM	LOR	9/10/2024 SE272259.001	9/10/2024 SE272259.007
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1
Lindane (gamma BHC)	mg/kg	0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1
o,p'-DDE*	mg/kg	0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2
o,p'-DDD*	mg/kg	0.1	<0.1	<0.1
o,p'-DDT*	mg/kg	0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1
Endrin aldehyde	mg/kg	0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1
Endrin ketone	mg/kg	0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1
Total OC VIC EPA	mg/kg	1	<1	<1

PCBs in Soil [AN420] Tested: 10/10/2024

			TP801_0.3-0.5	TP806_0.2-0.4
			SOIL	SOIL
			-	-
PARAMETER	UOM	LOR	9/10/2024 SE272259.001	9/10/2024 SE272259.007
Arochlor 1016	mg/kg	0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1

ANALYTICAL RESULTS

SE272259 R0

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 10/10/2024

			TP801_0.3-0.5	TP801_0.8-0.9	TP802_0.6-0.8	TP803_0.1-0.3	TP804_0.4-0.6
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
PARAMETER	UOM	LOR	9/10/2024 SE272259.001	9/10/2024 SE272259.002	9/10/2024 SE272259.003	9/10/2024 SE272259.004	9/10/2024 SE272259.005
Arsenic, As	mg/kg	1	2	4	2	5	<1
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	14	22	8.8	25	5.7
Copper, Cu	mg/kg	0.5	7.0	4.9	5.1	2.4	1.5
Lead, Pb	mg/kg	1	12	9	10	15	7
Nickel, Ni	mg/kg	0.5	4.3	2.2	4.9	2.0	3.7
Zinc, Zn	mg/kg	2	32	5.7	37	5.9	24

			TP805_0.3-0.5	TP806_0.2-0.4	TP807_0.3-0.5	TP808_0.3-0.5	DUP1
			SOIL	SOIL	SOIL	SOIL	SOIL
			9/10/2024	9/10/2024	9/10/2024	9/10/2024	9/10/2024
PARAMETER	UOM	LOR	SE272259.006	SE272259.007	SE272259.008	SE272259.009	SE272259.010
Arsenic, As	mg/kg	1	2	3	7	5	6
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	8.4	12	18	17	19
Copper, Cu	mg/kg	0.5	8.1	18	14	6.6	5.4
Lead, Pb	mg/kg	1	9	8	15	14	16
Nickel, Ni	mg/kg	0.5	5.1	6.6	6.1	4.2	3.6
Zinc, Zn	mg/kg	2	38	27	24	5.9	6.8

SE272259 R0

Mercury in Soil [AN312] Tested: 10/10/2024

			TP801_0.3-0.5	TP801_0.8-0.9	TP802_0.6-0.8	TP803_0.1-0.3	TP804_0.4-0.6
			SOIL	SOIL	SOIL	SOIL	SOIL
			9/10/2024	9/10/2024	9/10/2024	9/10/2024	9/10/2024
PARAMETER	UOM	LOR	SE272259.001	SE272259.002	SE272259.003	SE272259.004	SE272259.005
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			TP805_0.3-0.5	TP806_0.2-0.4	TP807_0.3-0.5	TP808_0.3-0.5	DUP1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			9/10/2024	9/10/2024	9/10/2024	9/10/2024	9/10/2024
PARAMETER	UOM	LOR	SE272259.006	SE272259.007	SE272259.008	SE272259.009	SE272259.010
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

SE272259 R0

Moisture Content [AN002] Tested: 10/10/2024

			TP801_0.3-0.5	TP801_0.8-0.9	TP802_0.6-0.8	TP803_0.1-0.3	TP804_0.4-0.6
			SOIL	SOIL	SOIL	SOIL	SOIL
			9/10/2024	9/10/2024	9/10/2024	9/10/2024	9/10/2024
PARAMETER	UOM	LOR	SE272259.001	SE272259.002	SE272259.003	SE272259.004	SE272259.005
% Moisture	%w/w	1	5.3	9.4	7.2	14.4	18.5

			TP805_0.3-0.5	TP806_0.2-0.4	TP807_0.3-0.5	TP808_0.3-0.5	DUP1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			9/10/2024	9/10/2024	9/10/2024	9/10/2024	9/10/2024
PARAMETER	UOM	LOR	SE272259.006	SE272259.007	SE272259.008	SE272259.009	SE272259.010
% Moisture	%w/w	1	5.3	12.3	12.4	18.6	19.4

METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN040/AN320	A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.
AN040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by AAS or ICP as per USEPA Method 200.8.
AN312	Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.
AN403	Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Recoverable Hydrocarbons - Silica (TRH-Si) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D). Total PAH calculated from individual analyte detections at or above the limit of reporting.
AN420	SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.

FOOTNOTES -

*	NATA accreditation does not cover
	the performance of this service.
**	Indicative data, theoretical holding
	time exceeded.

*** Indicates that both * and ** apply.

NVL IS LNR

Not analysed. Not validated. Insufficient sample for analysis. Sample listed, but not received. UOM Unit of Measure. LOR Limit of Reporting. ↑↓ Raised/lowered Limit of Reporting.

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au/en-gb/environment-health-and-safety</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS	·	LABORATORY DETAI	ILS
Contact Client Address	Rahabar Alam DEVELOPMENT RISK MANAGEMENT PTY LTD 37 MOUNT PLEASANT AVENUE NORMANHURST NSW 2076	Manager Laboratory Address	Shane McDermott SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	(Not specified)	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	rahabar_alam@drm.ltd	Email	au.environmental.sydney@sgs.com
Project	DRM P23.1039.V13-Orchard Hills	SGS Reference	SE272259 R0
Order Number	DRM P23.1039.V13	Date Received	09 Oct 2024
Samples	10	Date Reported	15 Oct 2024

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

 Matrix Spike
 Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES
 1 item

 TRH (Total Recoverable Hydrocarbons) in Soil
 4 items

Sample counts by matrix	10 Soil	Type of documentation received	COC	
Date documentation received	9/10/2024	Samples received in good order	Yes	
Samples received without headspace	Yes	Sample temperature upon receipt	4.8°C	
Sample container provider	SGS	Turnaround time requested	Standard	
Samples received in correct containers	Yes	Sufficient sample for analysis	Yes	
Sample cooling method	Ice Bricks	Samples clearly labelled	Yes	
Complete documentation received	Yes			

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety Unit 16 33 Maddox St PO Box 6432 Bourke Rd Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia f +61 2 8594 0499

t +61 2 8594 0400 www.sgs.com.au f +61 2 8594 0499

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the

								ME-(AU)-[ENV]AN31
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP801_0.3-0.5	SE272259.001	LB326369	09 Oct 2024	09 Oct 2024	06 Nov 2024	10 Oct 2024	06 Nov 2024	14 Oct 2024
TP801_0.8-0.9	SE272259.002	LB326369	09 Oct 2024	09 Oct 2024	06 Nov 2024	10 Oct 2024	06 Nov 2024	14 Oct 2024
TP802_0.6-0.8	SE272259.003	LB326369	09 Oct 2024	09 Oct 2024	06 Nov 2024	10 Oct 2024	06 Nov 2024	14 Oct 2024
TP803_0.1-0.3	SE272259.004	LB326369	09 Oct 2024	09 Oct 2024	06 Nov 2024	10 Oct 2024	06 Nov 2024	14 Oct 2024
TP804_0.4-0.6	SE272259.005	LB326369	09 Oct 2024	09 Oct 2024	06 Nov 2024	10 Oct 2024	06 Nov 2024	14 Oct 2024
TP805_0.3-0.5	SE272259.006	LB326369	09 Oct 2024	09 Oct 2024	06 Nov 2024	10 Oct 2024	06 Nov 2024	14 Oct 2024
TP806_0.2-0.4	SE272259.000	LB326369	09 Oct 2024	09 Oct 2024	06 Nov 2024	10 Oct 2024	06 Nov 2024	14 Oct 2024
TP807 0.3-0.5	SE272259.008	LB326369	09 Oct 2024	09 Oct 2024	06 Nov 2024	10 Oct 2024	06 Nov 2024	14 Oct 2024
TP808_0.3-0.5	SE272259.009	LB326369	09 Oct 2024	09 Oct 2024	06 Nov 2024	10 Oct 2024	06 Nov 2024	14 Oct 2024
DUP1	SE272259.010	LB326369	09 Oct 2024	09 Oct 2024	06 Nov 2024	10 Oct 2024	06 Nov 2024	14 Oct 2024
Voisture Content							Method: I	ME-(AU)-[ENV]AN00
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP801_0.3-0.5	SE272259.001	LB326378	09 Oct 2024	09 Oct 2024	23 Oct 2024	10 Oct 2024	15 Oct 2024	14 Oct 2024
TP801_0.8-0.9	SE272259.002	LB326378	09 Oct 2024	09 Oct 2024	23 Oct 2024	10 Oct 2024	15 Oct 2024	14 Oct 2024
TP802_0.6-0.8	SE272259.003	LB326378	09 Oct 2024	09 Oct 2024	23 Oct 2024	10 Oct 2024	15 Oct 2024	14 Oct 2024
TP803_0.1-0.3	SE272259.004	LB326378	09 Oct 2024	09 Oct 2024	23 Oct 2024	10 Oct 2024	15 Oct 2024	14 Oct 2024
TP804_0.4-0.6	SE272259.005	LB326378	09 Oct 2024	09 Oct 2024	23 Oct 2024	10 Oct 2024	15 Oct 2024	14 Oct 2024
TP805_0.3-0.5	SE272259.006	LB326378	09 Oct 2024	09 Oct 2024	23 Oct 2024	10 Oct 2024	15 Oct 2024	14 Oct 2024
TP806_0.2-0.4	SE272259.007	LB326378	09 Oct 2024	09 Oct 2024	23 Oct 2024	10 Oct 2024	15 Oct 2024	14 Oct 2024
TP807 0.3-0.5	SE272259.008	LB326378	09 Oct 2024	09 Oct 2024	23 Oct 2024 23 Oct 2024	10 Oct 2024	15 Oct 2024	14 Oct 2024
TP808_0.3-0.5	SE272259.009	LB326378	09 Oct 2024	09 Oct 2024	23 Oct 2024	10 Oct 2024	15 Oct 2024	14 Oct 2024
		LB326378					15 Oct 2024	
DUP1	SE272259.010	LB320376	09 Oct 2024	09 Oct 2024	23 Oct 2024	10 Oct 2024		14 Oct 2024
DC Pesticides in Soil								ME-(AU)-[ENV]AN42
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP801_0.3-0.5	SE272259.001	LB326362	09 Oct 2024	09 Oct 2024	23 Oct 2024	10 Oct 2024	19 Nov 2024	14 Oct 2024
TP802_0.6-0.8	SE272259.003	LB326362	09 Oct 2024	09 Oct 2024	23 Oct 2024	10 Oct 2024	19 Nov 2024	14 Oct 2024
TP804_0.4-0.6	SE272259.005	LB326362	09 Oct 2024	09 Oct 2024	23 Oct 2024	10 Oct 2024	19 Nov 2024	14 Oct 2024
TP805_0.3-0.5	SE272259.006	LB326362	09 Oct 2024	09 Oct 2024	23 Oct 2024	10 Oct 2024	19 Nov 2024	14 Oct 2024
TP806_0.2-0.4	SE272259.007	LB326362	09 Oct 2024	09 Oct 2024	23 Oct 2024	10 Oct 2024	19 Nov 2024	14 Oct 2024
TP807_0.3-0.5	SE272259.008	LB326362	09 Oct 2024	09 Oct 2024	23 Oct 2024	10 Oct 2024	19 Nov 2024	14 Oct 2024
TP808_0.3-0.5	SE272259.009	LB326362	09 Oct 2024	09 Oct 2024	23 Oct 2024	10 Oct 2024	19 Nov 2024	14 Oct 2024
								ME-(AU)-[ENVJAN42
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP801_0.3-0.5	SE272259.001	LB326362	09 Oct 2024	09 Oct 2024	23 Oct 2024	10 Oct 2024	19 Nov 2024	14 Oct 2024
TP802_0.6-0.8	SE272259.003	LB326362	09 Oct 2024	09 Oct 2024	23 Oct 2024	10 Oct 2024	19 Nov 2024	14 Oct 2024
TP804 0.4-0.6	SE272259.005	LB326362	09 Oct 2024	09 Oct 2024	23 Oct 2024	10 Oct 2024	19 Nov 2024	14 Oct 2024
TP805 0.3-0.5	SE272259.006	LB326362	09 Oct 2024	09 Oct 2024	23 Oct 2024	10 Oct 2024	19 Nov 2024	14 Oct 2024
TP806_0.2-0.4	SE272259.007	LB326362	09 Oct 2024	09 Oct 2024	23 Oct 2024	10 Oct 2024	19 Nov 2024	14 Oct 2024
TP807_0.3-0.5	SE272259.008	LB326362 LB326362	09 Oct 2024	09 Oct 2024	23 Oct 2024	10 Oct 2024	19 Nov 2024 19 Nov 2024	14 Oct 2024
TP808_0.3-0.5	SE272259.009	LB326362	09 Oct 2024	09 Oct 2024	23 Oct 2024	10 Oct 2024		14 Oct 2024
PCBs in Soil							Method. I	ME-(AU)-JENVJAN42
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP801_0.3-0.5	SE272259.001	LB326362	09 Oct 2024	09 Oct 2024	23 Oct 2024	10 Oct 2024	19 Nov 2024	14 Oct 2024
TP802_0.6-0.8	SE272259.003	LB326362	09 Oct 2024	09 Oct 2024	23 Oct 2024	10 Oct 2024	19 Nov 2024	14 Oct 2024
TP804_0.4-0.6	SE272259.005	LB326362	09 Oct 2024	09 Oct 2024	23 Oct 2024	10 Oct 2024	19 Nov 2024	14 Oct 2024
TP805_0.3-0.5	SE272259.006	LB326362	09 Oct 2024	09 Oct 2024	23 Oct 2024	10 Oct 2024	19 Nov 2024	14 Oct 2024
TP806_0.2-0.4	SE272259.007	LB326362	09 Oct 2024	09 Oct 2024	23 Oct 2024	10 Oct 2024	19 Nov 2024	14 Oct 2024
TP807_0.3-0.5	SE272259.008	LB326362	09 Oct 2024	09 Oct 2024	23 Oct 2024	10 Oct 2024	19 Nov 2024	14 Oct 2024
TP808_0.3-0.5	SE272259.009	LB326362	09 Oct 2024	09 Oct 2024	23 Oct 2024	10 Oct 2024	19 Nov 2024	14 Oct 2024
)-[ENV]AN040/AN32
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP801_0.3-0.5	SE272259.001	LB326367	09 Oct 2024	09 Oct 2024	07 Apr 2025	10 Oct 2024	07 Apr 2025	14 Oct 2024
	SE272259.001	LB326367					•	
TP801_0.8-0.9			09 Oct 2024	09 Oct 2024	07 Apr 2025	10 Oct 2024	07 Apr 2025	14 Oct 2024
TP802_0.6-0.8	SE272259.003	LB326367	09 Oct 2024	09 Oct 2024	07 Apr 2025	10 Oct 2024	07 Apr 2025	14 Oct 2024
TP803_0.1-0.3	SE272259.004	LB326367	09 Oct 2024	09 Oct 2024	07 Apr 2025	10 Oct 2024	07 Apr 2025	14 Oct 2024
TP804_0.4-0.6	SE272259.005	LB326367	09 Oct 2024	09 Oct 2024	07 Apr 2025	10 Oct 2024	07 Apr 2025	14 Oct 2024
TP805_0.3-0.5	SE272259.006	LB326367	09 Oct 2024	09 Oct 2024	07 Apr 2025	10 Oct 2024	07 Apr 2025	14 Oct 2024

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP806_0.2-0.4	SE272259.007	LB326367	09 Oct 2024	09 Oct 2024	07 Apr 2025	10 Oct 2024	07 Apr 2025	14 Oct 2024
TP807_0.3-0.5	SE272259.008	LB326367	09 Oct 2024	09 Oct 2024	07 Apr 2025	10 Oct 2024	07 Apr 2025	14 Oct 2024
TP808_0.3-0.5	SE272259.009	LB326367	09 Oct 2024	09 Oct 2024	07 Apr 2025	10 Oct 2024	07 Apr 2025	14 Oct 2024
DUP1	SE272259.010	LB326367	09 Oct 2024	09 Oct 2024	07 Apr 2025	10 Oct 2024	07 Apr 2025	14 Oct 2024
								ME-(AU)-[ENV]AN4(
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP801_0.3-0.5	SE272259.001	LB326362	09 Oct 2024	09 Oct 2024	23 Oct 2024	10 Oct 2024	19 Nov 2024	15 Oct 2024
TP802_0.6-0.8	SE272259.003	LB326362	09 Oct 2024	09 Oct 2024	23 Oct 2024	10 Oct 2024	19 Nov 2024	15 Oct 2024
TP804_0.4-0.6	SE272259.005	LB326362	09 Oct 2024	09 Oct 2024	23 Oct 2024	10 Oct 2024	19 Nov 2024	15 Oct 2024
TP805_0.3-0.5	SE272259.006	LB326362	09 Oct 2024	09 Oct 2024	23 Oct 2024	10 Oct 2024	19 Nov 2024	15 Oct 2024
TP806_0.2-0.4	SE272259.007	LB326362	09 Oct 2024	09 Oct 2024	23 Oct 2024	10 Oct 2024	19 Nov 2024	15 Oct 2024
TP807_0.3-0.5	SE272259.008	LB326362	09 Oct 2024	09 Oct 2024	23 Oct 2024	10 Oct 2024	19 Nov 2024	15 Oct 2024
TP808_0.3-0.5	SE272259.009	LB326362	09 Oct 2024	09 Oct 2024	23 Oct 2024	10 Oct 2024	19 Nov 2024	15 Oct 2024
								ME-(AU)-[ENV]AN4:
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP801_0.3-0.5	SE272259.001	LB326363	09 Oct 2024	09 Oct 2024	23 Oct 2024	10 Oct 2024	23 Oct 2024	14 Oct 2024
TP802_0.6-0.8	SE272259.003	LB326363	09 Oct 2024	09 Oct 2024	23 Oct 2024	10 Oct 2024	23 Oct 2024	14 Oct 2024
TP804_0.4-0.6	SE272259.005	LB326363	09 Oct 2024	09 Oct 2024	23 Oct 2024	10 Oct 2024	23 Oct 2024	14 Oct 2024
TP805_0.3-0.5	SE272259.006	LB326363	09 Oct 2024	09 Oct 2024	23 Oct 2024	10 Oct 2024	23 Oct 2024	14 Oct 2024
TP806_0.2-0.4	SE272259.007	LB326363	09 Oct 2024	09 Oct 2024	23 Oct 2024	10 Oct 2024	23 Oct 2024	14 Oct 2024
TP807_0.3-0.5	SE272259.008	LB326363	09 Oct 2024	09 Oct 2024	23 Oct 2024	10 Oct 2024	23 Oct 2024	14 Oct 2024
TP808_0.3-0.5	SE272259.009	LB326363	09 Oct 2024	09 Oct 2024	23 Oct 2024	10 Oct 2024	23 Oct 2024	14 Oct 2024
/olatile Petroleum Hydro								ME-(AU)-[ENV]AN4
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
Sample Name TP801_0.3-0.5	Sample No. SE272259.001	QC Ref LB326363	Sampled 09 Oct 2024	Received 09 Oct 2024	Extraction Due 23 Oct 2024	Extracted 10 Oct 2024	Analysis Due 23 Oct 2024	Analysed 14 Oct 2024
							,	
TP801_0.3-0.5	SE272259.001	LB326363	09 Oct 2024	09 Oct 2024	23 Oct 2024	10 Oct 2024	23 Oct 2024	14 Oct 2024
TP801_0.3-0.5 TP802_0.6-0.8	SE272259.001 SE272259.003	LB326363 LB326363	09 Oct 2024 09 Oct 2024	09 Oct 2024 09 Oct 2024	23 Oct 2024 23 Oct 2024	10 Oct 2024 10 Oct 2024	23 Oct 2024 23 Oct 2024	14 Oct 2024 14 Oct 2024
TP801_0.3-0.5 TP802_0.6-0.8 TP804_0.4-0.6	SE272259.001 SE272259.003 SE272259.005	LB326363 LB326363 LB326363	09 Oct 2024 09 Oct 2024 09 Oct 2024	09 Oct 2024 09 Oct 2024 09 Oct 2024	23 Oct 2024 23 Oct 2024 23 Oct 2024	10 Oct 2024 10 Oct 2024 10 Oct 2024	23 Oct 2024 23 Oct 2024 23 Oct 2024 23 Oct 2024	14 Oct 2024 14 Oct 2024 14 Oct 2024
TP801_0.3-0.5 TP802_0.6-0.8 TP804_0.4-0.6 TP805_0.3-0.5	SE272259.001 SE272259.003 SE272259.005 SE272259.006	LB326363 LB326363 LB326363 LB326363 LB326363	09 Oct 2024 09 Oct 2024 09 Oct 2024 09 Oct 2024 09 Oct 2024	09 Oct 2024 09 Oct 2024 09 Oct 2024 09 Oct 2024 09 Oct 2024	23 Oct 2024 23 Oct 2024 23 Oct 2024 23 Oct 2024 23 Oct 2024	10 Oct 2024 10 Oct 2024 10 Oct 2024 10 Oct 2024	23 Oct 2024 23 Oct 2024 23 Oct 2024 23 Oct 2024 23 Oct 2024	14 Oct 2024 14 Oct 2024 14 Oct 2024 14 Oct 2024 14 Oct 2024

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Tetrachloro-m-xylene (TCMX) (Surrogate)	TP801_0.3-0.5	SE272259.001	%	60 - 130%	105
	TP806_0.2-0.4	SE272259.007	%	60 - 130%	118
AH (Polynuclear Aromatic Hydrocarbons) in Soil					E-(AU)-[ENV]AN
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	TP801_0.3-0.5	SE272259.001	%	70 - 130%	106
	TP802_0.6-0.8	SE272259.003	%	70 - 130%	104
	TP804_0.4-0.6	SE272259.005	%	70 - 130%	101
	TP805_0.3-0.5	SE272259.006	%	70 - 130%	95
	TP806_0.2-0.4	SE272259.007	%	70 - 130%	96
	TP807_0.3-0.5	SE272259.008	%	70 - 130%	98
	TP808_0.3-0.5	SE272259.009	%	70 - 130%	100
d14-p-terphenyl (Surrogate)	TP801_0.3-0.5	SE272259.001	%	70 - 130%	105
	TP802_0.6-0.8	SE272259.003	%	70 - 130%	105
	TP804_0.4-0.6	SE272259.005	%	70 - 130%	97
	TP805_0.3-0.5	SE272259.006	%	70 - 130%	93
	TP806_0.2-0.4	SE272259.007	%	70 - 130%	98
	TP807_0.3-0.5	SE272259.008	%	70 - 130%	99
	TP808_0.3-0.5	SE272259.009	%	70 - 130%	100
d5-nitrobenzene (Surrogate)	TP801_0.3-0.5	SE272259.001	%	70 - 130%	106
	TP802_0.6-0.8	SE272259.003	%	70 - 130%	111
	TP804_0.4-0.6	SE272259.005	%	70 - 130%	104
	TP805_0.3-0.5	SE272259.006	%	70 - 130%	98
	TP806_0.2-0.4	SE272259.007	%	70 - 130%	102
	TP807_0.3-0.5 TP808 0.3-0.5	SE272259.008	%	70 - 130%	102
	1P808_0.3-0.5	SE272259.009	%	70 - 130%	102
				Method. Mf	E-(AU)-[ENV]AN
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery
TCMX (Surrogate)	TP801_0.3-0.5	SE272259.001	%	60 - 130%	102
	TP806_0.2-0.4	SE272259.007	%	60 - 130%	115
					E-(AU)-[ENV]AP
arameter	Sample Name	Sample Number	Units	Method: Mf Criteria	······
	Sample Name TP801_0.3-0.5	Sample Number SE272259.001	Units %		······
				Criteria	Recovery
	TP801_0.3-0.5	SE272259.001	%	Criteria 60 - 130%	Recovery 80
	TP801_0.3-0.5 TP802_0.6-0.8	SE272259.001 SE272259.003	%	Criteria 60 - 130% 60 - 130%	Recovery 80 72
	TP801_0.3-0.5 TP802_0.6-0.8 TP804_0.4-0.6	SE272259.001 SE272259.003 SE272259.005	% % %	Criteria 60 - 130% 60 - 130% 60 - 130%	Recovery 80 72 79
	TP801_0.3-0.5 TP802_0.6-0.8 TP804_0.4-0.6 TP805_0.3-0.5	SE272259.001 SE272259.003 SE272259.005 SE272259.006	% % %	Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130%	Recovery 80 72 79 83
	TP801_0.3-0.5 TP802_0.6-0.8 TP804_0.4-0.6 TP805_0.3-0.5 TP806_0.2-0.4	SE272259.001 SE272259.003 SE272259.005 SE272259.006 SE272259.007	% % % %	Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	Recovery 80 72 79 83 85
Bromofluorobenzene (Surrogate)	TP801_0.3-0.5 TP802_0.6-0.8 TP804_0.4-0.6 TP805_0.3-0.5 TP806_0.2-0.4 TP807_0.3-0.5	SE272259.001 SE272259.003 SE272259.005 SE272259.006 SE272259.007 SE272259.008	% % % %	Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	Recovery 80 72 79 83 85 94
Bromofluorobenzene (Surrogate)	TP801_0.3-0.5 TP802_0.6-0.8 TP804_0.4-0.6 TP805_0.3-0.5 TP806_0.2-0.4 TP807_0.3-0.5 TP808_0.3-0.5	SE272259.001 SE272259.003 SE272259.005 SE272259.006 SE272259.007 SE272259.008 SE272259.009	% % % % %	Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	Recovery 80 72 79 83 85 94 79
Bromofluorobenzene (Surrogate)	TP801_0.3-0.5 TP802_0.6-0.8 TP804_0.4-0.6 TP805_0.3-0.5 TP806_0.2-0.4 TP807_0.3-0.5 TP808_0.3-0.5 TP801_0.3-0.5	SE272259.001 SE272259.003 SE272259.005 SE272259.006 SE272259.007 SE272259.008 SE272259.009 SE272259.001	% % % % %	Criteria 60 - 130% 60 - 130%	Recovery 80 72 79 83 85 94 79 75
Bromofluorobenzene (Surrogate)	TP801_0.3-0.5 TP802_0.6-0.8 TP804_0.4-0.6 TP805_0.3-0.5 TP806_0.2-0.4 TP807_0.3-0.5 TP808_0.3-0.5 TP801_0.3-0.5 TP802_0.6-0.8	SE272259.001 SE272259.003 SE272259.005 SE272259.006 SE272259.007 SE272259.008 SE272259.009 SE272259.001 SE272259.001 SE272259.003	% % % % % %	Critoria 60 - 130% 60 - 130%	Recovery 80 72 79 83 85 94 79 75 70
Bromofluorobenzene (Surrogate)	TP801_0.3-0.5 TP802_0.6-0.8 TP804_0.4-0.6 TP805_0.3-0.5 TP807_0.3-0.5 TP808_0.3-0.5 TP801_0.3-0.5 TP802_0.6-0.8 TP804_0.4-0.6	SE272259.001 SE272259.003 SE272259.005 SE272259.006 SE272259.007 SE272259.008 SE272259.009 SE272259.001 SE272259.003 SE272259.003 SE272259.003	% % % % % % %	Critoria 60 - 130% 60 - 130%	Recovery 80 72 79 83 85 94 79 75 70 76
Bromofluorobenzene (Surrogate)	TP801_0.3-0.5 TP802_0.6-0.8 TP804_0.4-0.6 TP805_0.3-0.5 TP807_0.3-0.5 TP808_0.3-0.5 TP801_0.3-0.5 TP802_0.6-0.8 TP804_0.4-0.6 TP805_0.3-0.5	SE272259.001 SE272259.003 SE272259.005 SE272259.006 SE272259.007 SE272259.008 SE272259.009 SE272259.001 SE272259.003 SE272259.003 SE272259.005 SE272259.005 SE272259.006	% % % % % % %	Critoria 60 - 130% 60 - 130%	Recovery 80 72 79 83 85 94 79 75 70 76 78
Bromofluorobenzene (Surrogate)	TP801_0.3-0.5 TP802_0.6-0.8 TP804_0.4-0.6 TP805_0.3-0.5 TP806_0.2-0.4 TP807_0.3-0.5 TP808_0.3-0.5 TP802_0.6-0.8 TP804_0.4-0.6 TP805_0.3-0.5 TP805_0.3-0.5	SE272259.001 SE272259.003 SE272259.005 SE272259.006 SE272259.007 SE272259.008 SE272259.009 SE272259.001 SE272259.003 SE272259.003 SE272259.005 SE272259.005 SE272259.006 SE272259.006 SE272259.007	% % % % % % % %	Criteria 60 - 130%	Recovery 80 72 79 83 85 94 79 75 70 76 78 82
3romofluorobenzene (Surrogate) 14-1,2-dichloroethane (Surrogate)	TP801_0.3-0.5 TP802_0.6-0.8 TP804_0.4-0.6 TP805_0.3-0.5 TP806_0.2-0.4 TP807_0.3-0.5 TP801_0.3-0.5 TP802_0.6-0.8 TP805_0.3-0.5 TP805_0.3-0.5 TP806_0.2-0.4 TP805_0.3-0.5 TP805_0.3-0.5 TP806_0.2-0.4 TP806_0.2-0.4 TP805_0.3-0.5 TP806_0.2-0.4 TP807_0.3-0.5 TP808_0.3-0.5 TP808_0.3-0.5	SE272259.001 SE272259.003 SE272259.005 SE272259.006 SE272259.007 SE272259.008 SE272259.009 SE272259.001 SE272259.003 SE272259.003 SE272259.005 SE272259.005 SE272259.006 SE272259.007 SE272259.007 SE272259.008	% % % % % % % % % %	Critoria 60 - 130% 60 - 130%	Recovery 80 72 79 83 85 94 79 75 70 76 78 82 89
3romofluorobenzene (Surrogate) 14-1,2-dichloroethane (Surrogate)	TP801_0.3-0.5 TP802_0.6-0.8 TP804_0.4-0.6 TP805_0.3-0.5 TP806_0.2-0.4 TP807_0.3-0.5 TP808_0.3-0.5 TP801_0.3-0.5 TP802_0.6-0.8 TP805_0.3-0.5 TP805_0.3-0.5 TP805_0.3-0.5 TP806_0.2-0.4 TP805_0.3-0.5 TP805_0.3-0.5 TP805_0.3-0.5 TP806_0.2-0.4 TP806_0.2-0.4 TP807_0.3-0.5 TP808_0.3-0.5	SE272259.001 SE272259.003 SE272259.005 SE272259.006 SE272259.007 SE272259.008 SE272259.009 SE272259.001 SE272259.003 SE272259.003 SE272259.005 SE272259.005 SE272259.006 SE272259.007 SE272259.006 SE272259.007 SE272259.008 SE272259.008 SE272259.009	% % % % % % % % % %	Criteria 60 - 130% 60 - 130%	Recovery 80 72 79 83 85 94 79 75 70 76 78 82 89 73
3romofluorobenzene (Surrogate) 14-1,2-dichloroethane (Surrogate)	TP801_0.3-0.5 TP802_0.6-0.8 TP804_0.4-0.6 TP805_0.3-0.5 TP806_0.2-0.4 TP807_0.3-0.5 TP801_0.3-0.5 TP802_0.6-0.8 TP805_0.3-0.5 TP805_0.3-0.5 TP806_0.2-0.4 TP805_0.3-0.5 TP805_0.3-0.5 TP806_0.2-0.4 TP806_0.2-0.4 TP805_0.3-0.5 TP806_0.2-0.4 TP807_0.3-0.5 TP808_0.3-0.5 TP808_0.3-0.5	SE272259.001 SE272259.003 SE272259.005 SE272259.006 SE272259.007 SE272259.008 SE272259.009 SE272259.001 SE272259.003 SE272259.004 SE272259.005 SE272259.005 SE272259.006 SE272259.006 SE272259.007 SE272259.008 SE272259.008 SE272259.008 SE272259.009 SE272259.008 SE272259.009 SE272259.009 SE272259.009 SE272259.009 SE272259.001	% % % % % % % % % % %	Criteria 60 - 130% 60 - 130%	Recovery 80 72 79 83 85 94 79 75 70 76 78 82 89 73 79
3romofluorobenzene (Surrogate) 14-1,2-dichloroethane (Surrogate)	TP801_0.3-0.5 TP802_0.6-0.8 TP804_0.4-0.6 TP805_0.3-0.5 TP806_0.2-0.4 TP807_0.3-0.5 TP801_0.3-0.5 TP802_0.6-0.8 TP805_0.3-0.5 TP805_0.3-0.5 TP805_0.3-0.5 TP806_0.2-0.4 TP805_0.3-0.5 TP806_0.2-0.4 TP808_0.3-0.5	SE272259.001 SE272259.003 SE272259.006 SE272259.007 SE272259.008 SE272259.009 SE272259.001 SE272259.003 SE272259.003 SE272259.004 SE272259.005 SE272259.006 SE272259.007 SE272259.008 SE272259.006 SE272259.009 SE272259.001 SE272259.003 SE272259.004 SE272259.005 SE272259.003 SE272259.005 SE272259.005 SE272259.005 SE272259.005 SE272259.005 SE272259.005 SE272259.005 SE272259.005 SE272259.005 SE272259.006	% %	Criteria 60 - 130% 60 - 130%	Recovery 80 72 79 83 85 94 79 75 70 76 82 89 73 79 74 79 83
3romofluorobenzene (Surrogate) 14-1,2-dichloroethane (Surrogate)	TP801_0.3-0.5 TP802_0.6-0.8 TP804_0.4-0.6 TP805_0.3-0.5 TP807_0.3-0.5 TP801_0.3-0.5 TP802_0.6-0.8 TP805_0.3-0.5 TP805_0.3-0.5 TP806_0.2-0.4 TP805_0.3-0.5 TP805_0.3-0.5 TP806_0.2-0.4 TP806_0.2-0.4 TP806_0.2-0.4 TP806_0.2-0.4 TP801_0.3-0.5 TP801_0.3-0.5 TP801_0.3-0.5 TP801_0.3-0.5 TP801_0.3-0.5 TP801_0.3-0.5 TP802_0.6-0.8 TP804_0.4-0.6 TP805_0.3-0.5 TP805_0.3-0.5 TP805_0.3-0.5	SE272259.001 SE272259.003 SE272259.006 SE272259.007 SE272259.008 SE272259.009 SE272259.009 SE272259.001 SE272259.003 SE272259.003 SE272259.005 SE272259.006 SE272259.007 SE272259.008 SE272259.009 SE272259.001 SE272259.003 SE272259.004 SE272259.005 SE272259.005 SE272259.001 SE272259.003 SE272259.005 SE272259.006 SE272259.005 SE272259.005 SE272259.005 SE272259.005 SE272259.005 SE272259.005 SE272259.006 SE272259.007	% %	Criteria 60 - 130%	Recovery 80 72 79 83 85 94 79 75 70 76 78 82 89 73 79 74 79 83 84
3romofluorobenzene (Surrogate) 14-1,2-dichloroethane (Surrogate)	TP801_0.3-0.5 TP802_0.6-0.8 TP804_0.4-0.6 TP805_0.3-0.5 TP806_0.2-0.4 TP807_0.3-0.5 TP802_0.6-0.8 TP804_0.4-0.6 TP805_0.3-0.5 TP802_0.6-0.8 TP806_0.2-0.4 TP805_0.3-0.5 TP806_0.2-0.4 TP806_0.2-0.4 TP806_0.2-0.4 TP806_0.2-0.4 TP806_0.2-0.4 TP806_0.2-0.4 TP801_0.3-0.5 TP801_0.3-0.5 TP802_0.6-0.8 TP804_0.4-0.6 TP805_0.3-0.5 TP805_0.3-0.5 TP805_0.3-0.5 TP805_0.3-0.5 TP805_0.3-0.5 TP805_0.3-0.5 TP805_0.3-0.5 TP806_0.2-0.4 TP806_0.2-0.4 TP806_0.2-0.4 TP807_0.3-0.5	SE272259.001 SE272259.003 SE272259.006 SE272259.007 SE272259.008 SE272259.009 SE272259.001 SE272259.003 SE272259.003 SE272259.003 SE272259.004 SE272259.005 SE272259.006 SE272259.007 SE272259.008 SE272259.001 SE272259.003 SE272259.004 SE272259.005 SE272259.001 SE272259.003 SE272259.004 SE272259.005 SE272259.006 SE272259.007 SE272259.007 SE272259.006 SE272259.007 SE272259.007 SE272259.006 SE272259.007 SE272259.007 SE272259.007 SE272259.007 SE272259.007 SE272259.007 SE272259.007 SE272259.008	% %	Criteria 60 - 130% 60 - 130% 6	Recovery 80 72 79 83 85 94 79 75 70 76 78 82 89 73 79 74 79 83 84 91
Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate)	TP801_0.3-0.5 TP802_0.6-0.8 TP804_0.4-0.6 TP805_0.3-0.5 TP807_0.3-0.5 TP801_0.3-0.5 TP802_0.6-0.8 TP805_0.3-0.5 TP805_0.3-0.5 TP806_0.2-0.4 TP805_0.3-0.5 TP805_0.3-0.5 TP806_0.2-0.4 TP806_0.2-0.4 TP806_0.2-0.4 TP806_0.2-0.4 TP801_0.3-0.5 TP801_0.3-0.5 TP801_0.3-0.5 TP801_0.3-0.5 TP801_0.3-0.5 TP801_0.3-0.5 TP802_0.6-0.8 TP804_0.4-0.6 TP805_0.3-0.5 TP805_0.3-0.5 TP805_0.3-0.5	SE272259.001 SE272259.003 SE272259.006 SE272259.007 SE272259.008 SE272259.009 SE272259.009 SE272259.001 SE272259.003 SE272259.003 SE272259.005 SE272259.006 SE272259.007 SE272259.008 SE272259.009 SE272259.001 SE272259.003 SE272259.004 SE272259.005 SE272259.005 SE272259.001 SE272259.003 SE272259.005 SE272259.006 SE272259.005 SE272259.005 SE272259.005 SE272259.005 SE272259.005 SE272259.005 SE272259.006 SE272259.007	% %	Criteria 60 - 130%	Recovery 80 72 79 83 85 94 79 75 70 76 89 73 79 74 79 83 84
Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	TP801_0.3-0.5 TP802_0.6-0.8 TP804_0.4-0.6 TP805_0.3-0.5 TP806_0.2-0.4 TP807_0.3-0.5 TP802_0.6-0.8 TP804_0.4-0.6 TP805_0.3-0.5 TP802_0.6-0.8 TP806_0.2-0.4 TP805_0.3-0.5 TP806_0.2-0.4 TP806_0.2-0.4 TP806_0.2-0.4 TP806_0.2-0.4 TP806_0.2-0.4 TP806_0.2-0.4 TP801_0.3-0.5 TP801_0.3-0.5 TP802_0.6-0.8 TP804_0.4-0.6 TP805_0.3-0.5 TP805_0.3-0.5 TP805_0.3-0.5 TP805_0.3-0.5 TP805_0.3-0.5 TP805_0.3-0.5 TP805_0.3-0.5 TP806_0.2-0.4 TP806_0.2-0.4 TP806_0.2-0.4 TP807_0.3-0.5	SE272259.001 SE272259.003 SE272259.006 SE272259.007 SE272259.008 SE272259.009 SE272259.001 SE272259.003 SE272259.003 SE272259.003 SE272259.004 SE272259.005 SE272259.006 SE272259.007 SE272259.008 SE272259.001 SE272259.003 SE272259.004 SE272259.005 SE272259.001 SE272259.003 SE272259.004 SE272259.005 SE272259.006 SE272259.007 SE272259.007 SE272259.006 SE272259.007 SE272259.006 SE272259.007 SE272259.007 SE272259.007 SE272259.007 SE272259.007 SE272259.007 SE272259.007 SE272259.007 SE272259.008	% %	Criteria 60 - 130%	Recovery 80 72 79 83 85 94 79 75 70 76 89 73 79 74 79 83 84 91 75
Parameter Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) d8-toluene (Surrogate)	TP801_0.3.0.5 TP802_0.6-0.8 TP804_0.4-0.6 TP805_0.3-0.5 TP806_0.2-0.4 TP807_0.3-0.5 TP804_0.4-0.6 TP802_0.6-0.8 TP805_0.3-0.5 TP806_0.2-0.4 TP806_0.2-0.4 TP802_0.6-0.8 TP806_0.2-0.4 TP806_0.2-0.4 TP807_0.3-0.5 TP808_0.3-0.5 TP808_0.3-0.5 TP801_0.3-0.5 TP802_0.6-0.8 TP805_0.3-0.5 TP806_0.2-0.4 TP805_0.3-0.5 TP806_0.2-0.4 TP805_0.3-0.5 TP806_0.2-0.4 TP806_0.2-0.4 TP806_0.2-0.4 TP806_0.2-0.4	SE272259.001 SE272259.003 SE272259.006 SE272259.007 SE272259.008 SE272259.009 SE272259.001 SE272259.003 SE272259.005 SE272259.003 SE272259.005 SE272259.006 SE272259.007 SE272259.007 SE272259.007 SE272259.001 SE272259.003 SE272259.001 SE272259.003 SE272259.001 SE272259.005 SE272259.005 SE272259.006 SE272259.007 SE272259.006 SE272259.007 SE272259.007 SE272259.007 SE272259.006 SE272259.007 SE272259.007 SE272259.008 SE272259.009	% %	Criteria 60 - 130%	Recovery 80 72 79 83 85 94 79 75 70 76 82 89 73 79 84 91 75 75
Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	TP801_0.3-0.5 TP802_0.6-0.8 TP804_0.4-0.6 TP805_0.3-0.5 TP806_0.2-0.4 TP807_0.3-0.5 TP802_0.6-0.8 TP804_0.4-0.6 TP805_0.3-0.5 TP802_0.6-0.8 TP806_0.2-0.4 TP805_0.3-0.5 TP806_0.2-0.4 TP806_0.2-0.4 TP806_0.2-0.4 TP806_0.2-0.4 TP806_0.2-0.4 TP806_0.2-0.4 TP801_0.3-0.5 TP801_0.3-0.5 TP802_0.6-0.8 TP804_0.4-0.6 TP805_0.3-0.5 TP805_0.3-0.5 TP805_0.3-0.5 TP805_0.3-0.5 TP805_0.3-0.5 TP805_0.3-0.5 TP805_0.3-0.5 TP806_0.2-0.4 TP806_0.2-0.4 TP806_0.2-0.4 TP807_0.3-0.5	SE272259.001 SE272259.003 SE272259.006 SE272259.007 SE272259.008 SE272259.009 SE272259.001 SE272259.003 SE272259.003 SE272259.003 SE272259.004 SE272259.005 SE272259.006 SE272259.007 SE272259.008 SE272259.001 SE272259.003 SE272259.004 SE272259.005 SE272259.001 SE272259.003 SE272259.004 SE272259.005 SE272259.006 SE272259.007 SE272259.007 SE272259.006 SE272259.007 SE272259.006 SE272259.007 SE272259.007 SE272259.007 SE272259.007 SE272259.007 SE272259.007 SE272259.007 SE272259.007 SE272259.008	% %	Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 6	Recovery 6 80 72 79 83 85 94 79 75 70 76 78 89 73 79 84 91 75 75
Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) d8-toluene (Surrogate)	TP801_0.3.0.5 TP802_0.6-0.8 TP804_0.4-0.6 TP805_0.3-0.5 TP806_0.2-0.4 TP807_0.3-0.5 TP801_0.3-0.5 TP802_0.6-0.8 TP801_0.3-0.5 TP802_0.6-0.8 TP805_0.3-0.5 TP806_0.2-0.4 TP805_0.3-0.5 TP806_0.2-0.4 TP806_0.2-0.4 TP807_0.3-0.5 TP808_0.3-0.5 TP802_0.6-0.8 TP804_0.4-0.6 TP805_0.3-0.5 TP806_0.2-0.4 TP805_0.3-0.5 TP806_0.2-0.4 TP806_0.2-0.4 TP805_0.3-0.5 TP806_0.2-0.4 TP806_0.2-0.4 TP806_0.2-0.4 TP806_0.2-0.4 TP806_0.2-0.4 TP808_0.3-0.5 TP808_0.3-0.5 TP808_0.3-0.5 TP808_0.3-0.5	SE272259.001 SE272259.003 SE272259.005 SE272259.006 SE272259.007 SE272259.008 SE272259.009 SE272259.001 SE272259.003 SE272259.005 SE272259.006 SE272259.007 SE272259.007 SE272259.007 SE272259.008 SE272259.007 SE272259.007 SE272259.001 SE272259.003 SE272259.004 SE272259.005 SE272259.005 SE272259.006 SE272259.007 SE272259.006 SE272259.007 SE272259.007 SE272259.007 SE272259.006 SE272259.007 SE272259.008 SE272259.009 SE272259.009 SE272259.009 SE272259.009 SE272259.009 SE272259.009 SE272259.009 SE272259.009	% %	Criteria 60 - 130%	Recovery 6 80 72 79 83 85 94 79 75 70 76 78 89 73 79 74 79 83 84 91 75 75 76 78 89 73 79 83 84 91 75 5 6 75 75 88 89 73 79 83 84 91 82 84 91 82 84 91 84 91 82 83
Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) d8-toluene (Surrogate)	TP801_0.3.0.5 TP802_0.6-0.8 TP804_0.4-0.6 TP805_0.3-0.5 TP806_0.2-0.4 TP807_0.3-0.5 TP801_0.3-0.5 TP804_0.4-0.6 TP805_0.3-0.5 TP805_0.3-0.5 TP806_0.2-0.4 TP805_0.3-0.5 TP806_0.2-0.4 TP806_0.2-0.4 TP808_0.3-0.5 TP808_0.3-0.5 TP801_0.3-0.5 TP802_0.6-0.8 TP805_0.3-0.5 TP806_0.2-0.4 TP805_0.3-0.5 TP806_0.2-0.4 TP806_0.2-0.4 TP806_0.2-0.4 TP806_0.2-0.4 TP806_0.2-0.4 TP806_0.2-0.4 TP808_0.3-0.5 TP808_0.3-0.5	SE272259.001 SE272259.003 SE272259.006 SE272259.007 SE272259.008 SE272259.009 SE272259.001 SE272259.003 SE272259.003 SE272259.004 SE272259.005 SE272259.006 SE272259.007 SE272259.008 SE272259.007 SE272259.008 SE272259.009 SE272259.001 SE272259.003 SE272259.004 SE272259.005 SE272259.006 SE272259.007 SE272259.008 SE272259.009 SE272259.006 SE272259.007 SE272259.008 SE272259.009 SE272259.009 </td <td>% Units %</td> <td>Criteria 60 - 130%</td> <td>72 79 83 85 94 79 75 70 76 78 82 89 73 79 74 79 74 79 83 84 91 75 5 5 5 -(AU)-[ENV]AN Recovery 9 80</td>	% Units %	Criteria 60 - 130%	72 79 83 85 94 79 75 70 76 78 82 89 73 79 74 79 74 79 83 84 91 75 5 5 5 -(AU)-[ENV]AN Recovery 9 80

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Parameter Sample Name Sample Number Units Criteria Recovery % Bromofluorobenzene (Surrogate) SE272259.007 60 - 130% TP806 0.2-0.4 % 85 TP807_0.3-0.5 SE272259.008 % 60 - 130% 94 79 TP808_0.3-0.5 SE272259.009 % 60 - 130% d4-1.2-dichloroethane (Surrogate) TP801 0.3-0.5 SE272259.001 % 60 - 130% 75 TP802_0.6-0.8 SE272259.003 % 60 - 130% 70 TP804_0.4-0.6 SE272259.005 60 - 130% 76 % TP805_0.3-0.5 SE272259.006 % 60 - 130% 78 TP806_0.2-0.4 SE272259.007 % 60 - 130% 82 TP807_0.3-0.5 SE272259.008 60 - 130% 89 % TP808 0.3-0.5 SE272259.009 % 60 - 130% 73 d8-toluene (Surrogate) TP801_0.3-0.5 SE272259.001 % 60 - 130% 79 SE272259.003 TP802 0.6-0.8 % 60 - 130% 74 TP804 0.4-0.6 SE272259.005 % 60 - 130% 79 TP805_0.3-0.5 SE272259.006 60 - 130% 83 % TP806_0.2-0.4 SE272259.007 60 - 130% 84 % TP807 0.3-0.5 SE272259.008 60 - 130% % 91 TP808_0.3-0.5 SE272259.009 % 60 - 130% 75

METHOD BLANKS

SE272259 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

				Method: ME-(AU)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result
LB326369.001	Mercury	mg/kg	0.05	<0.05

OC Pesticides in Soil

Sample Number	Parameter	Units	LOR	Result
B326362.001	Alpha BHC	mg/kg	0.1	<0.1
	Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
	Beta BHC	mg/kg	0.1	<0.1
	Lindane (gamma BHC)	mg/kg	0.1	<0.1
	Delta BHC	mg/kg	0.1	<0.1
	Heptachlor	mg/kg	0.1	<0.1
	Aldrin	mg/kg	0.1	<0.1
	Isodrin	mg/kg	0.1	<0.1
	Heptachlor epoxide	mg/kg	0.1	<0.1
	Gamma Chlordane	mg/kg	0.1	<0.1
	Alpha Chlordane	mg/kg	0.1	<0.1
	Alpha Endosulfan	mg/kg	0.2	<0.2
	p,p'-DDE	mg/kg	0.1	<0.1
	Dieldrin	mg/kg	0.2	<0.2
	Endrin	mg/kg	0.2	<0.2
	Beta Endosulfan	mg/kg	0.2	<0.2
	p,p'-DDD	mg/kg	0.1	<0.1
	Endrin aldehyde	mg/kg	0.1	<0.1
	Endosulfan sulphate	mg/kg	0.1	<0.1
	p,p'-DDT	mg/kg	0.1	<0.1
	Endrin ketone	mg/kg	0.1	<0.1
	Methoxychlor	mg/kg	0.1	<0.1
	Mirex	mg/kg	0.1	<0.1
Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%		94
AH (Polynuclear Aromatic Hydrocarbons) ir			Methr	od: ME-(AU)-[ENV]A
ample Number	Parameter	Units	LOR	Result
3326362.001	Naphthalene	mg/kg	0.1	<0.1
	2-methylnaphthalene	mg/kg	0.1	<0.1
	1-methylnaphthalene	mg/kg	0.1	<0.1
	Acenaphthylene	mg/kg	0.1	<0.1
	Acenaphthene	mg/kg	0.1	<0.1
	Fluorene	mg/kg	0.1	<0.1
	Phenanthrene	mg/kg	0.1	<0.1
	Anthracene	mg/kg	0.1	<0.1
	Fluoranthene	mg/kg	0.1	<0.1

Surrogates	d5-nitrobenzene (Surrogate)	
	2-fluorobiphenyl (Surrogate)	
	d14-p-terphenyl (Surrogate)	
Sample Number	Parameter	
LB326362.001	Arochlor 1016	
	Arochlor 1221	

Pyrene

Chrysene

Benzo(a)anthracene

Indeno(1,2,3-cd)pyrene

Dibenzo(ah)anthracene

Benzo(ghi)perylene

Total PAH (18)

Benzo(a)pyrene

Method: ME-(AU)-(ENVIAN4

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.8

107

104

105

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

%

%

%

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.8

-

-

Sample Number	Parameter	Units	LOR	Result
LB326362.001	Arochlor 1016	mg/kg	0.2	<0.2
	Arochlor 1221	mg/kg	0.2	<0.2
	Arochlor 1232	mg/kg	0.2	<0.2
	Arochlor 1242	mg/kg	0.2	<0.2
	Arochlor 1248	mg/kg	0.2	<0.2
	Arochlor 1254	mg/kg	0.2	<0.2

METHOD BLANKS

SE272259 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

					od: ME-(AU)-[ENV]AN4
Sample Number		Parameter	Units	LOR	Result
LB326362.001		Arochlor 1260	mg/kg	0.2	<0.2
		Arochlor 1262	mg/kg	0.2	<0.2
		Arochlor 1268	mg/kg	0.2	<0.2
		Total PCBs (Arochlors)	mg/kg	1	<1
	Surrogates	TCMX (Surrogate)	%	-	91
Total Recoverable Ele	ements in Soil/Waste Solids/Mat	erials by ICPOES		Method: ME-	(AU)-[ENV]AN040/AN:
Sample Number		Parameter	Units	LOR	Result
LB326367.001		Arsenic, As	mg/kg	1	<1
		Cadmium, Cd	mg/kg	0.3	<0.3
		Chromium, Cr	mg/kg	0.5	<0.5
		Copper, Cu	mg/kg	0.5	<0.5
		Nickel, Ni	mg/kg	0.5	<0.5
		Lead, Pb	mg/kg	1	<1
		Zinc, Zn	mg/kg	2	<2.0
					od: ME-(AU)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result
LB326362.001		TRH C10-C14	mg/kg	20	<20
		TRH C15-C28	mg/kg	45	<45
		TRH C29-C36	mg/kg	45	<45
		TRH C37-C40	mg/kg	100	<100
		TRH C10-C36 Total	mg/kg	110	<110
					od: ME-(AU)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result
LB326363.001	Monocyclic Aromatic	Benzene	mg/kg	0.1	<0.1
	Hydrocarbons	Toluene	mg/kg	0.1	<0.1
		Ethylbenzene	mg/kg	0.1	<0.1
		m/p-xylene	mg/kg	0.2	<0.2
		o-xylene	mg/kg	0.1	<0.1
	Polycyclic VOCs	Naphthalene (VOC)*	mg/kg	0.1	<0.1
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	87
		d8-toluene (Surrogate)	%	-	93
		Bromofluorobenzene (Surrogate)	%	-	100
	Totals	Total BTEX*	mg/kg	0.6	<0.6
√olatile Petroleum Hy	drocarbons in Soil			Meth	od: ME-(AU)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result
LB326363.001		TRH C6-C9	mg/kg	20	<20
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	87

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

								ENVJAN312
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE272259.002	LB326369.014	Mercury	mg/kg	0.05	<0.05	<0.05	200	0
SE272259.010	LB326369.023	Mercury	mg/kg	0.05	<0.05	<0.05	200	0

Moisture Conten

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE272259.007	LB326378.022	% Moisture	%w/w	1	12.3	13.2	38	7
SE272259.010	LB326378.026	% Moisture	%w/w	1	19.4	18.4	35	5
SE272329.007	LB326378.011	% Moisture	%w/w	1	14.5	14.8	37	2

OC Pesticides in Soil

	Dunlingto		Demonstern	11	LOD	Out when the	Dunkland	0	
Original	Duplicate		Parameter	Units	LOR	Original		Criteria %	RPD %
SE272259.007	LB326362.030		Alpha BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	200	0
			Beta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Lindane (gamma BHC)	mg/kg	0.1	<0.1	<0.1	200	0
			Delta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor	mg/kg	0.1	<0.1	<0.1	200	0
			Aldrin	mg/kg	0.1	<0.1	<0.1	200	0
			Isodrin	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	200	0
			Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
			o,p'-DDE*	mg/kg	0.1	<0.1	<0.1	200	0
			p,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
			Dieldrin	mg/kg	0.2	<0.2	<0.2	200	0
			Endrin	mg/kg	0.2	<0.2	<0.2	200	0
			Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
			o,p'-DDD*	mg/kg	0.1	<0.1	<0.1	200	0
			p,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin aldehyde	mg/kg	0.1	<0.1	<0.1	200	0
			Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	200	0
			o,p'-DDT*	mg/kg	0.1	<0.1	<0.1	200	0
			p,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin ketone	mg/kg	0.1	<0.1	<0.1	200	0
			Methoxychlor	mg/kg	0.1	<0.1	<0.1	200	0
			Mirex	mg/kg	0.1	<0.1	<0.1	200	0
			trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	200	0
			Total CLP OC Pesticides	mg/kg	1	<1	<1	200	0
			Total OC VIC EPA	mg/kg	1	<1	<1	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.18	0.17	30	6
									[ENV]AN4:
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
-	Duplicate LB326362.030		Parameter Naphthalene	Units mg/kg	LOR 0.1	Original <0.1	Duplicate <0.1	Criteria % 200	RPD % 0
-						-			
-			Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
-			Naphthalene 2-methylnaphthalene	mg/kg mg/kg	0.1 0.1	<0.1 <0.1	<0.1 <0.1	200 200	0 0
Original SE272259.007			Naphthalene 2-methylnaphthalene 1-methylnaphthalene	mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	200 200 200	0 0 0
-			Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene	mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1	<0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 0.1	200 200 200 129	0 0 0 32
-			Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 0.1 <0.1	200 200 200 129 200	0 0 0 32 0
-			Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthene Fluorene	mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 0.1 <0.1 <0.1 <0.1	200 200 200 129 200 200	0 0 32 0 0
-			Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.5	<0.1 <0.1 <0.1 0.1 <0.1 <0.1 <0.1 0.5	200 200 200 129 200 200 52	0 0 32 0 0 1
-			Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.5 0.2	<0.1 <0.1 <0.1 0.1 <0.1 <0.1 <0.1 0.5 0.2	200 200 129 200 200 200 52 76	0 0 32 0 0 1 30
-			Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.5 0.2 1.1	<0.1 <0.1 <0.1 0.1 <0.1 <0.1 <0.1 0.5 0.2 1.1	200 200 129 200 200 52 76 39	0 0 32 0 0 1 30 1
-			Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.1 <0.1 <0.1 <0.1 <0.1 0.5 0.2 1.1 1.2 0.4	<0.1 <0.1 <0.1 0.1 <0.1 <0.1 <0.1 0.5 0.2 1.1 1.2 0.4	200 200 129 200 200 52 76 39 39 39 54	0 0 32 0 1 30 1 0 2
-			Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.1 <0.1 <0.1 <0.1 <0.1 0.5 0.2 1.1 1.2 0.4 0.5	<0.1 <0.1 <0.1 0.1 <0.1 <0.1 0.5 0.2 1.1 1.2 0.4 0.4	200 200 129 200 200 52 76 39 39 39 54 50	0 0 32 0 0 1 30 1 0
-			Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b&j)fluoranthene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.5 0.5 0.2 1.1 1.2 0.4 0.5 0.6	<0.1 <0.1 <0.1 0.1 <0.1 <0.1 0.5 0.2 1.1 1.2 0.4 0.4 0.6	200 200 129 200 200 52 76 39 39 39 54 50 46	0 0 32 0 1 30 1 0 2 23
-			Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.1 <0.1 <0.1 <0.1 <0.1 0.5 0.2 1.1 1.2 0.4 0.5	<0.1 <0.1 <0.1 0.1 <0.1 <0.1 0.5 0.2 1.1 1.2 0.4 0.4	200 200 129 200 200 52 76 39 39 39 54 50	0 0 32 0 1 30 1 30 1 2 23 1

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

Copper, Cu

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)

SE272259.007	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
	LB326362.030		Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(ghi)perylene	mg/kg	0.1	0.5	0.5	52	0
			Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>mg/kg</td><td>0.2</td><td>0.7</td><td>0.7</td><td>37</td><td>3</td></lor=0*<>	mg/kg	0.2	0.7	0.7	37	3
			Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>mg/kg</td><td>0.2</td><td>0.8</td><td>0.8</td><td>35</td><td>2</td></lor=lor>	mg/kg	0.2	0.8	0.8	35	2
			Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>mg/kg</td><td>0.3</td><td>0.8</td><td>0.8</td><td>46</td><td>2</td></lor=lor*<>	mg/kg	0.3	0.8	0.8	46	2
			Total PAH (18)	mg/kg	0.8	6.2	6.2	32	0
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.5	30	4
		Sunogates					0.5		0
			2-fluorobiphenyl (Surrogate)	mg/kg		0.5		30	
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	0
SE272259.009	LB326362.027		Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthylene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluorene	mg/kg	0.1	<0.1	<0.1	200	0
			Phenanthrene	mg/kg	0.1	<0.1	<0.1	200	0
			Anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Chrysene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	200	0
			Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td><0.2</td><td>200</td><td>0</td></lor=0*<>	mg/kg	0.2	<0.2	<0.2	200	0
									0
			Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td><0.2</td><td>175</td><td></td></lor=lor>	mg/kg	0.2	<0.2	<0.2	175	
			Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>mg/kg</td><td>0.3</td><td><0.3</td><td><0.3</td><td>134</td><td>0</td></lor=lor*<>	mg/kg	0.3	<0.3	<0.3	134	0
			Total PAH (18)	mg/kg	0.8	<0.8	<0.8	200	0
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.6	30	9
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	7
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.6	30	10
Driginal	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD 9
	LB326362.031			Ullis				Cinterna //	
	LD320302.031				0.0			200	
E272259.007			Arochlor 1016	mg/kg	0.2	<0.2	<0.2	200	0
E272259.007			Arochlor 1221	mg/kg	0.2	<0.2	<0.2	200	0
EZ/ZZ39.00/			Arochlor 1221 Arochlor 1232	mg/kg mg/kg	0.2	<0.2 <0.2	<0.2 <0.2	200 200	0
5272259.007			Arochlor 1221	mg/kg	0.2	<0.2	<0.2	200	0
5272259.007			Arochlor 1221 Arochlor 1232	mg/kg mg/kg	0.2	<0.2 <0.2	<0.2 <0.2	200 200	0
12272239.007			Arochlor 1221 Arochlor 1232 Arochlor 1242	mg/kg mg/kg mg/kg	0.2 0.2 0.2	<0.2 <0.2 <0.2	<0.2 <0.2 <0.2	200 200 200	0 0 0
12272239.007			Arochlor 1221 Arochlor 1232 Arochlor 1242 Arochlor 1248	mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 0.2	<0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2	200 200 200 200	0 0 0 0
E2/2299.007			Arochlor 1221 Arochlor 1232 Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1260	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	200 200 200 200 200 200 200	0 0 0 0
E2/2299.007			Arochlor 1221 Arochlor 1232 Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	200 200 200 200 200 200 200 200	0 0 0 0 0 0 0
SE272259.007			Arochlor 1221 Arochlor 1232 Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0
SE212239.001		Surrogates	Arochlor 1221 Arochlor 1232 Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0
		Surrogates	Arochlor 1221 Arochlor 1232 Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) TCMX (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0
	Elements in Soil-Wa		Arochlor 1221 Arochlor 1232 Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) TCMX (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0
otal Recoverable	Elements in Soil-Wa Duplicate		Arochlor 1221 Arochlor 1232 Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) TCMX (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 6 8
otal Recoverable Driginal			Arochlor 1221 Arochlor 1232 Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) TCMX (Surrogate) S by ICPOES	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 1 -	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	200 200 200 200 200 200 200 200 30 30	0 0 0 0 0 0 0 0 0 0 6 8
otal Recoverable Driginal	Duplicate		Arochlor 1221 Arochlor 1232 Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) TCMX (Surrogate) Styl CPOES Parameter Arsenic, As	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 1 - LOR 1	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	200 200 200 200 200 200 200 200 30 30 Criteria % 50	0 0 0 0 0 0 0 0 6 N040/AN
otal Recoverable Driginal	Duplicate		Arochlor 1221 Arochlor 1232 Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) TCMX (Surrogate) s by ICPOES Parameter Arsenic, As Cadmium, Cd	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 1 - LOR 1 0.3	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	200 200 200 200 200 200 200 200 30 *(AU)-(ENV)A Criteria % 50 200	0 0 0 0 0 0 0 0 0 0 6 N040/AN RPD 30 0
otal Recoverable Driginal	Duplicate		Arochlor 1221 Arochlor 1232 Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) TCMX (Surrogate) s by ICPOES Parameter Arsenic, As Cadmium, Cd Chromium, Cr	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 0.2 0.2 0.2 0.2 1 - LOR 1 0.3 0.5	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	200 200 200 200 200 200 200 200 30 *(AU)-(ENV)A Criteria % 50 200 32	0 0 0 0 0 0 0 0 0 6 N040/AN RPD 30 0 0
otal Recoverable Driginal	Duplicate		Arochlor 1221 Arochlor 1232 Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) TCMX (Surrogate) s by ICPOES Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 0.2 0.2 0.2 0.2 1 - - LOR 1 0.3 0.5 0.5	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	200 200 200 200 200 200 200 200 30 *(AU)-(ENV)A Criteria % 50 200 32 41	0 0 0 0 0 0 0 0 0 6 N040/AN RPD 30 0 0 27
otal Recoverable Driginal	Duplicate		Arochlor 1221 Arochlor 1232 Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) TCMX (Surrogate) s hy ICPOES Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 1 - - LOR 1 0.3 0.5 0.5 0.5	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	200 200 200 200 200 200 200 200 30 Criteria % 50 200 32 41 52	0 0 0 0 0 0 0 0 0 6 8 8 0 0 0 27 8 5
otal Recoverable Driginal	Duplicate		Arochlor 1221 Arochlor 1232 Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) TCMX (Surrogate) S by ICPOES Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 1 - - - - - - - - - - - - - - - - - -	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <1 0 Original 4 <0.3 22 4.9 2.2 9	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	200 200 200 200 200 200 200 200 30 (AU)-(ENV)A Criteria % 50 200 32 41 52 40	0 0 0 0 0 0 0 0 6 8 8 0 0 0 27 8 5 17
	Duplicate		Arochlor 1221 Arochlor 1232 Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) TCMX (Surrogate) s hy ICPOES Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 1 - - LOR 1 0.3 0.5 0.5 0.5	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	200 200 200 200 200 200 200 200 30 Criteria % 50 200 32 41 52	0 0 0 0 0 0 0 0 0 6 8 0 0 0 27 8 5
lal Recoverable Priginal	Duplicate		Arochlor 1221 Arochlor 1232 Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) TCMX (Surrogate) S by ICPOES Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb	mg/kg mg/kg	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 1 - - - - - - - - - - - - - - - - - -	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <1 0 Original 4 <0.3 22 4.9 2.2 9	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	200 200 200 200 200 200 200 200 30 (AU)-(ENV)A Criteria % 50 200 32 41 52 40	0 0 0 0 0 0 0 0 0 0 8 8 0 0 0 277 8 5 17
tal Recoverable riginal E272259.002	Duplicate LB326367.014		Arochlor 1221 Arochlor 1232 Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1260 Arochlor 1268 Total PCBs (Arochlors) TCMX (Surrogate) S by ICPOES Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 1 - - - - - - - - - - - - - - - - - -	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <1 0 Method: ME- Duplicate 6 3 28 4.5 2.3 11 5.5	200 200 200 200 200 200 200 30 *(AU)-(ENV A Criteria % 50 200 32 41 52 40 66	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

mg/kg

0.5

5.4

6.8

38

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD 9
SE272259.010	LB326367.023		Nickel, Ni	mg/kg	0.5	3.6	4.3	43	19
			Lead, Pb	mg/kg	1	16	22	35	32
			Zinc, Zn	mg/kg	2	6.8	6.0	61	13
Did (Total Dagar	erable Hydrocarbons)	un Cod						nod: ME-(AU)-	
	*	111 301							
Original	Duplicate		Parameter	Units	LOR	Original		Criteria %	RPD
SE272259.007	LB326362.030		TRH C10-C14	mg/kg	20	<20	<20	200	0
			TRH C15-C28	mg/kg	45	180	230	52	27
			TRH C29-C36	mg/kg	45	520	600	38	14
			TRH C37-C40	mg/kg	100	500	560	49	11
			TRH C10-C36 Total	mg/kg	110	700	830	44	18
			TRH >C10-C40 Total (F bands)	mg/kg	210	1200	1400	46	15
		TRH F Bands	TRH >C10-C16	mg/kg	25	<25	<25	170	0
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	200	0
			TRH >C16-C34 (F3)	mg/kg	90	540	650	45	18
	1 5 9 9 9 9 9 7		TRH >C34-C40 (F4)	mg/kg	120	650	740	47	12
SE272259.009	LB326362.027		TRH C10-C14	mg/kg	20	<20	<20	200	0
			TRH C15-C28	mg/kg	45	<45	<45	200	0
			TRH C29-C36	mg/kg	45	<45	<45	200	0
			TRH C37-C40	mg/kg	100	<100	<100	200	0
			TRH C10-C36 Total	mg/kg	110	<110	<110	200	0
		TRH F Bands	TRH >C10-C40 Total (F bands) TRH >C10-C16	mg/kg	210	<210	<210 <25	200	0
		TRH F Danus	TRH >C10-C16 - Naphthalene (F2)	mg/kg	25 25	<25 <25	<25	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<25	<25	200	0
			TRH >C34-C40 (F4)	mg/kg mg/kg	120	<120	<90	200	0
			TRH 2034-040 (F4)	iiig/kg	120	\$120			
OC's in Soil							Meth	nod: ME-(AU)-	IENVIA
Driginal	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
E272259.005	LB326363.014	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
			o-xylene	mg/kg	0.1	<0.1	<0.1	200	0
		Polycyclic	No. b the slower (1/00)t			-0.1	-0.1	200	
		1 orycycho	Naphthalene (VOC)*	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg mg/kg	0.1				0 8
						<0.1	<0.1	200	8 6
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	<0.1 7.6	<0.1 8.2	200 50	8
			d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	mg/kg mg/kg	-	<0.1 7.6 7.9	<0.1 8.2 8.4	200 50 50	8 6
		Surrogates	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	mg/kg mg/kg mg/kg	-	<0.1 7.6 7.9 7.9	<0.1 8.2 8.4 8.4	200 50 50 50	8 6 6
SE272259.009	LB326363.019	Surrogates	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total BTEX*	mg/kg mg/kg mg/kg mg/kg	- - - 0.6	<0.1 7.6 7.9 7.9 <0.6	<0.1 8.2 8.4 8.4 <0.6	200 50 50 50 200	8 6 6 0
SE272259.009	LB326363.019	Surrogates Totals	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total BTEX* Total Xylenes*	mg/kg mg/kg mg/kg mg/kg mg/kg	- - 0.6 0.3	<0.1 7.6 7.9 7.9 <0.6 <0.3	<0.1 8.2 8.4 8.4 <0.6 <0.3	200 50 50 50 200 200	8 6 0 0 0
SE272259.009	LB326363.019	Surrogates Totals Monocyclic	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total BTEX* Total Xylenes* Benzene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- 0.6 0.3 0.1	<0.1 7.6 7.9 7.9 <0.6 <0.3 <0.1	<0.1 8.2 8.4 8.4 <0.6 <0.3 <0.1	200 50 50 200 200 200	8 6 6 0
SE272259.009	LB326363.019	Surrogates Totals Monocyclic	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total BTEX* Total Xylenes* Benzene Toluene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- 0.6 0.3 0.1 0.1 0.1 0.2	<0.1 7.6 7.9 7.9 <0.6 <0.3 <0.1 <0.1 <0.1 <0.2	<0.1 8.2 8.4 <0.6 <0.3 <0.1 <0.1 <0.1 <0.2	200 50 50 200 200 200 200 200 200 200	8 6 0 0 0 0 0 0 0
SE272259.009	LB326363.019	Surrogates Totals Monocyclic	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total BTEX* Total Xylenes* Benzene Toluene Ethylbenzene m/p-xylene o-xylene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- 0.6 0.3 0.1 0.1 0.1 0.2 0.1	<0.1 7.6 7.9 7.9 <0.6 <0.3 <0.1 <0.1 <0.1 <0.2 <0.1	<0.1 8.2 8.4 <0.6 <0.3 <0.1 <0.1 <0.1 <0.2 <0.1	200 50 50 200 200 200 200 200 200 200 20	8 6 0 0 0 0 0 0
SE272259.009	LB326363.019	Surrogates Totals Monocyclic	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total BTEX* Total Xylenes* Benzene Toluene Ethylbenzene m/p-xylene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- 0.6 0.3 0.1 0.1 0.1 0.2	<0.1 7.6 7.9 7.9 <0.6 <0.3 <0.1 <0.1 <0.1 <0.2	<0.1 8.2 8.4 <0.6 <0.3 <0.1 <0.1 <0.1 <0.2	200 50 50 200 200 200 200 200 200 200	8 6 0 0 0 0 0 0 0 0 0 0 0
SE272259.009	LB326363.019	Surrogates Totals Monocyclic Aromatic	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total BTEX* Total Xylenes* Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene (VOC)* d4-1,2-dichloroethane (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- 0.6 0.3 0.1 0.1 0.1 0.2 0.1	<0.1 7.6 7.9 7.9 <0.6 <0.3 <0.1 <0.1 <0.2 <0.1 <0.2 <0.1 7.3	<0.1 8.2 8.4 6.6 6.3 6.1 6.1 6.1 6.1 6.2 7.7	200 50 50 200 200 200 200 200 200 200 20	8 6 0 0 0 0 0 0 0 0 0 0 5
SE272259.009	LB326363.019	Surrogates Totals Monocyclic Aromatic Polycyclic	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total BTEX* Total Xylenes* Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene (VOC)* d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- 0.6 0.3 0.1 0.1 0.1 0.2 0.1 0.1	<0.1 7.6 7.9 7.9 <0.6 <0.3 <0.1 <0.1 <0.1 <0.2 <0.1 <0.1 <0.1	<0.1 8.2 8.4 <0.6 <0.3 <0.1 <0.1 <0.1 <0.2 <0.1 <0.1	200 50 50 200 200 200 200 200 200 200 20	8 6 0 0 0 0 0 0 0 0 0 0 5
SE272259.009	LB326363.019	Surrogates Totals Monocyclic Aromatic Polycyclic Surrogates	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total BTEX* Total Xylenes* Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene (VOC)* d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- 0.6 0.3 0.1 0.1 0.1 0.2 0.1 0.1 0.1	<0.1 7.6 7.9 7.9 <0.6 <0.3 <0.1 <0.1 <0.1 <0.2 <0.1 <0.1 <0.2 <0.1 7.3 7.5 7.9	<0.1 8.2 8.4 8.4 <0.6 <0.3 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	200 50 50 200 200 200 200 200 200 200 20	8 6 0 0 0 0 0 0 0 0 0 0 5 7 7
E272259.009	LB326363.019	Surrogates Totals Monocyclic Aromatic Polycyclic	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total BTEX* Total Xylenes* Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene (VOC)* d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- 0.6 0.3 0.1 0.1 0.1 0.2 0.1 0.1	<0.1 7.6 7.9 7.9 <0.6 <0.3 <0.1 <0.1 <0.2 <0.1 <0.2 <0.1 <0.1 7.3 7.5	<0.1 8.2 8.4 8.4 <0.6 <0.3 <0.1 <0.1 <0.1 <0.2 <0.1 <0.1 7.7 8.0	200 50 50 200 200 200 200 200 200 200 20	8 6 0 0 0 0 0 0 0 0 0 0 0 5 7 7
E272259.009	LB326363.019	Surrogates Totals Monocyclic Aromatic Polycyclic Surrogates	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total BTEX* Total Xylenes* Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene (VOC)* d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- 0.6 0.3 0.1 0.1 0.1 0.1 0.2 0.1 0.1 -	<0.1 7.6 7.9 7.9 <0.6 <0.3 <0.1 <0.1 <0.1 <0.2 <0.1 <0.1 <0.2 <0.1 7.3 7.5 7.9	<0.1 8.2 8.4 8.4 <0.6 <0.3 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	200 50 50 200 200 200 200 200 200 200 20	8 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 7 1 1 0
	LB326363.019	Surrogates Totals Monocyclic Aromatic Polycyclic Surrogates Totals	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total BTEX* Total Xylenes* Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene (VOC)* d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) Total BTEX*	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- 0.6 0.3 0.1 0.1 0.1 0.1 0.1 0.1 - - - 0.6	<0.1 7.6 7.9 7.9 <0.6 <0.3 <0.1 <0.1 <0.1 <0.1 <0.2 <0.1 <0.1 7.3 7.5 7.9 <0.6	<0.1 8.2 8.4 8.4 <0.6 <0.3 <0.1 <0.1 <0.1 <0.2 <0.1 <0.1 <0.1 7.7 8.0 7.8 <0.6 <0.3	200 50 50 200 200 200 200 200 200 200 20	8 6 0 0 0 0 0 0 0 0 0 0 5 7 1 0 0
olatile Petroleun) Hydrocarbons in Soil	Surrogates Totals Monocyclic Aromatic Polycyclic Surrogates Totals	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total BTEX* Total Xylenes* Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene (VOC)* d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total BTEX* Total Sylenes*	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- 0.6 0.3 0.1 0.1 0.1 0.1 0.1 0.1 - - - 0.6 0.3	<0.1 7.6 7.9 7.9 <0.6 <0.3 <0.1 <0.1 <0.1 <0.2 <0.1 <0.2 <0.1 7.3 7.5 7.9 <0.6 <0.3	<0.1 8.2 8.4 8.4 <0.6 <0.3 <0.1 <0.1 <0.1 <0.2 <0.1 <0.1 <0.2 <0.1 7.7 8.0 7.8 <0.6 <0.3	200 50 50 200 200 200 200 200 200 200 50 50 50 50 200 20	8 6 0 0 0 0 0 0 0 0 0 0 5 7 7 1 0 0 0 8 8 7 7 1 0 0 0 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9
Statile Petroleun Driginal	ו Hydrocarbons וו Soil Duplicate	Surrogates Totals Monocyclic Aromatic Polycyclic Surrogates Totals	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total BTEX* Total Xylenes* Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene (VOC)* d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total BTEX* Total Xylenes*	mg/kg mg/kg </td <td>- - - - - - - - - - - - - - - - - - -</td> <td><0.1 7.6 7.9 7.9 <0.6 <0.3 <0.1 <0.1 <0.1 <0.2 <0.1 <0.1 <0.2 <0.1 7.3 7.5 7.9 <0.6 <0.3</td> <td><0.1 8.2 8.4 8.4 <0.6 <0.3 <0.1 <0.1 <0.1 <0.2 <0.1 <0.1 <0.1 <0.2 <0.1 7.7 8.0 7.8 <0.6 <0.3 Moll Duplicate</td> <td>200 50 50 200 200 200 200 200 200 200 20</td> <td>8 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>	- - - - - - - - - - - - - - - - - - -	<0.1 7.6 7.9 7.9 <0.6 <0.3 <0.1 <0.1 <0.1 <0.2 <0.1 <0.1 <0.2 <0.1 7.3 7.5 7.9 <0.6 <0.3	<0.1 8.2 8.4 8.4 <0.6 <0.3 <0.1 <0.1 <0.1 <0.2 <0.1 <0.1 <0.1 <0.2 <0.1 7.7 8.0 7.8 <0.6 <0.3 Moll Duplicate	200 50 50 200 200 200 200 200 200 200 20	8 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Statile Petroleun Driginal) Hydrocarbons in Soil	Surrogates Totals Monocyclic Aromatic Polycyclic Surrogates Totals	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total BTEX* Total Xylenes* Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene (VOC)* d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) Bromofluorobenzene (Surrogate) Total BTEX* Total Sylenes*	mg/kg	- - - - - - - - - - - - - - - - - - -	<0.1 7.6 7.9 7.9 <0.6 <0.3 <0.1 <0.1 <0.1 <0.2 <0.1 <0.1 <0.1 <0.2 <0.1 7.3 7.5 7.9 <0.6 <0.3 Original <25	<0.1 8.2 8.4 8.4 <0.6 <0.3 <0.1 <0.1 <0.1 <0.1 <0.2 <0.1 <0.1 7.7 8.0 7.8 <0.6 <0.3 Kell Duplicate <25	200 50 50 200 200 200 200 200 200 200 20	88666000000000000000000000000000000000
SE272259.009 Diatile Petroleum Driginal SE272259.005	ו Hydrocarbons וו Soil Duplicate	Surrogates Totals Monocyclic Aromatic Polycyclic Surrogates Totals	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total BTEX* Total Xylenes* Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene (VOC)* d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) Bromofluorobenzene (Surrogate) Total BTEX* Total BTEX* Total Xylenes*	mg/kg	- - 0.6 0.3 0.1 0.1 0.1 0.1 0.1 0.1 - - 0.6 0.3 LOR 25 20	<0.1 7.6 7.9 7.9 <0.6 <0.3 <0.1 <0.1 <0.1 <0.2 <0.1 <0.1 7.3 7.5 7.9 <0.6 <0.3 Original <25 <20	<0.1 8.2 8.4 8.4 <0.6 <0.3 <0.1 <0.1 <0.1 <0.1 <0.2 <0.1 <0.1 7.7 8.0 7.8 <0.6 <0.3 Khell Duplicate <25 <20	200 50 50 200 200 200 200 200 200 200 20	88666000000000000000000000000000000000
Statile Petroleun Driginal	ו Hydrocarbons וו Soil Duplicate	Surrogates Totals Monocyclic Aromatic Polycyclic Surrogates Totals	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total BTEX* Total Xylenes* Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene (VOC)* d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) Bromofluorobenzene (Surrogate) Total BTEX* Total Sylenes*	mg/kg	- - - - - - - - - - - - - - - - - - -	<0.1 7.6 7.9 7.9 <0.6 <0.3 <0.1 <0.1 <0.1 <0.2 <0.1 <0.1 7.3 7.5 7.9 <0.6 <0.3 Original <25 <20 7.6	<0.1 8.2 8.4 6.6 6.3 6.1 6.1 6.1 6.1 6.1 7.7 8.0 7.8 6.0 7.8 6.0 6.5 7.8 6.0 7.8 7.8 6.0 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8	200 50 50 200 200 200 200 200 20	88666000000000000000000000000000000000
olatile Petroleun Driginal	ו Hydrocarbons וו Soil Duplicate	Surrogates Totals Monocyclic Aromatic Polycyclic Surrogates Totals	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total BTEX* Total Xylenes* Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene (VOC)* d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total BTEX* Total Sylenes* Parameter TRH C6-C10 TRH C6-C9 d4-1,2-dichloroethane (Surrogate)	mg/kg mg/kg </td <td>- - - - - - - - - - - - - - - - - - -</td> <td><0.1 7.6 7.9 7.9 <0.6 <0.3 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 7.3 7.5 7.9 <0.6 <0.3 Original <25 <20 7.6 7.9</td> <td> <0.1 8.2 8.4 8.4 <0.6 <0.3 <0.1 <0.1 <0.1 <0.2 <0.1 <0.1 <0.7 <0.0 <0.6 <0.3 <0.6 <0.6 <0.6 <0.7 <0.7 <0.6 <0.7 <0.7</td> <td>200 50 50 200 200 200 200 200 200 200 20</td> <td>88 66 00 00 00 00 00 00 00 00 00 00 00 00</td>	- - - - - - - - - - - - - - - - - - -	<0.1 7.6 7.9 7.9 <0.6 <0.3 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 7.3 7.5 7.9 <0.6 <0.3 Original <25 <20 7.6 7.9	 <0.1 8.2 8.4 8.4 <0.6 <0.3 <0.1 <0.1 <0.1 <0.2 <0.1 <0.1 <0.7 <0.0 <0.6 <0.3 <0.6 <0.6 <0.6 <0.7 <0.7 <0.6 <0.7 <0.7	200 50 50 200 200 200 200 200 200 200 20	88 66 00 00 00 00 00 00 00 00 00 00 00 00
Statile Petroleun Driginal	ו Hydrocarbons וו Soil Duplicate	Surrogates Totals Monocyclic Aromatic Polycyclic Surrogates Totals	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total BTEX* Total Xylenes* Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene (VOC)* d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) Bromofluorobenzene (Surrogate) Total BTEX* Total Sylenes*	mg/kg	- - - - - - - - - - - - - - - - - - -	<0.1 7.6 7.9 7.9 <0.6 <0.3 <0.1 <0.1 <0.1 <0.2 <0.1 <0.1 7.3 7.5 7.9 <0.6 <0.3 Original <25 <20 7.6	<0.1 8.2 8.4 6.6 6.3 6.1 6.1 6.1 6.1 6.1 7.7 8.0 7.8 6.0 7.8 6.0 6.5 7.8 6.0 7.8 7.8 6.0 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8	200 50 50 200 200 200 200 200 20	88666660000000000000000000000000000000

SE272259.009

LB326363.019

TRH C6-C10

0

25

mg/kg

<25

<25

200

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

Volatile Petroleum Hydrocarbons in Soil (continued)

									(Ella y Privado)
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE272259.009	LB326363.019		TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	7.3	7.7	50	5
			d8-toluene (Surrogate)	mg/kg	-	7.5	8.0	50	7
			Bromofluorobenzene (Surrogate)	mg/kg	-	7.9	7.8	50	1
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

							U)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB326369.002	Mercury	mg/kg	0.05	0.20	0.2	80 - 120	101

OC Pesticides in Soil

								e) (cite) findize
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB326362.002		Delta BHC	mg/kg	0.1	0.2	0.2	60 - 140	92
		Heptachlor	mg/kg	0.1	0.2	0.2	60 - 140	86
		Aldrin	mg/kg	0.1	0.2	0.2	60 - 140	86
		Dieldrin	mg/kg	0.2	<0.2	0.2	60 - 140	84
		Endrin	mg/kg	0.2	<0.2	0.2	60 - 140	83
		p,p'-DDT	mg/kg	0.1	0.2	0.2	60 - 140	86
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.15	0.15	40 - 130	98
PAH (Polynuclear								U)-[ENV]AN420
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB326362.002		Naphthalene	mg/kg	0.1	4.7	4	60 - 140	117
		Acenaphthylene	mg/kg	0.1	5.0	4	60 - 140	125
		Acenaphthene	mg/kg	0.1	4.5	4	60 - 140	113
		Phenanthrene	mg/kg	0.1	4.6	4	60 - 140	114
		Anthracene	mg/kg	0.1	5.0	4	60 - 140	126
		Fluoranthene	mg/kg	0.1	4.4	4	60 - 140	110
		Pyrene	mg/kg	0.1	4.2	4	60 - 140	106
		Benzo(a)pyrene	mg/kg	0.1	5.5	4	60 - 140	137
	Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.5	70 - 130	102
		2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	70 - 130	109
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	70 - 130	91
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB326362.002		Arochlor 1260	mg/kg	0.2	0.4	0.4	60 - 140	112

						and they ferry	
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
_B326367.002	Arsenic, As	mg/kg	1	330	318.22	80 - 120	103
	Cadmium, Cd	mg/kg	0.3	3.9	4.81	70 - 130	81
	Chromium, Cr	mg/kg	0.5	45	38.31	80 - 120	117
	Copper, Cu	mg/kg	0.5	290	290	80 - 120	99
	Nickel, Ni	mg/kg	0.5	170	187	80 - 120	91
	Lead, Pb	mg/kg	1	93	89.9	80 - 120	104
	Zinc, Zn	mg/kg	2	280	273	80 - 120	102
RH (Total Recoverable Hydrocarbor							
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
LB326362.002	TRH C10-C14	mg/kg	20	50	40	60 - 140	124
	TRH C15-C28	mg/kg	45	46	40	60 - 140	115
	TRH C29-C36	mg/kg	45	<45	40	60 - 140	89
TRH F Bands	TRH >C10-C16	mg/kg	25	49	40	60 - 140	123
	TRH >C16-C34 (F3)	mg/kg	90	<90	40	60 - 140	101
	TRH >C34-C40 (F4)	mg/kg	120	<120	20	60 - 140	90
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
LB326363.002 Monocyclic	Benzene	mg/kg	0.1	3.8	5	60 - 140	76
Aromatic	Toluene	mg/kg	0.1	3.9	5	60 - 140	78
	Ethylbenzene	mg/kg	0.1	4.1	5	60 - 140	82
	m/p-xylene	mg/kg	0.2	8.0	10	60 - 140	80
	o-xylene	mg/kg	0.1	4.2	5	60 - 140	84
							U)-[ENV]AN
Sample Number	Parameter	Units	LOR				

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Volatile Petroleum H								U)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB326363.002		TRH C6-C10	 mg/kg	25	68	92.5	60 - 140	73
		TRH C6-C9	 mg/kg	20	59	80	60 - 140	74
	VPH F Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	44	62.5	60 - 140	70

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury in Soil								J)-[ENV]AN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE272322.001	LB326369.004	Mercury	mg/kg	0.05	0.31	0.12	0.2	94

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE272322.001	LB326362.004		Naphthalene	mg/kg	0.1	4.6	<0.1	4	114
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	-	-
			1-methylnaphthalene	mg/kg	0.1	0.1	<0.1	-	-
			Acenaphthylene	mg/kg	0.1	4.9	0.2	4	118
			Acenaphthene	mg/kg	0.1	4.2	<0.1	4	104
			Fluorene	mg/kg	0.1	<0.1	<0.1	-	-
			Phenanthrene	mg/kg	0.1	5.2	1.3	4	98
			Anthracene	mg/kg	0.1	5.0	0.5	4	112
			Fluoranthene	mg/kg	0.1	6.4	3.5	4	73
			Pyrene	mg/kg	0.1	6.3	3.3	4	75
			Benzo(a)anthracene	mg/kg	0.1	1.1	1.5	-	-
			Chrysene	mg/kg	0.1	1.2	1.7	-	-
			Benzo(b&j)fluoranthene	mg/kg	0.1	1.8	2.3	-	-
			Benzo(k)fluoranthene	mg/kg	0.1	0.8	0.9	-	-
			Benzo(a)pyrene	mg/kg	0.1	6.6	2.1	4	112
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	0.9	1.1	-	
			Dibenzo(ah)anthracene	mg/kg	0.1	0.2	0.3		
			Benzo(ghi)perylene	mg/kg	0.1	0.9	1.1		-
			Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ (mg/kg)</td><td>0.1</td><td>7.3</td><td>3.0</td><td></td><td></td></lor=0*<>	TEQ (mg/kg)	0.1	7.3	3.0		
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>7.3</td><td>3.0</td><td>-</td><td></td></lor=0<>	TEQ (mg/kg)	0.2	7.3	3.0	-	
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td></td><td>0.2</td><td>7.3</td><td>3.0</td><td>-</td><td>-</td></lor=lor>		0.2	7.3	3.0	-	-
				TEQ (mg/kg)		50	20	-	-
		Currentee	Total PAH (18)	mg/kg	0.8		0.5	-	-
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg		0.5			105
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	-	109
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	-	93
otal Recoverab	le Elements in Soil/W	aste Solids/Mate	mals by ICPOES				Method: ME	-(AU)-[ENV]	AN040/AN32
C Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery
E272322.001	LB326367.004		Arsenic, As	mg/kg	1	59	8	50	102
			Cadmium, Cd	mg/kg	0.3	46	0.3	50	91
									-
			Chromium, Cr	mg/kg	0.5	63	9.8	50	107
			Chromium, Cr Copper, Cu	mg/kg mg/kg	0.5 0.5	63 110	9.8 66		
								50	107
			Copper, Cu	mg/kg	0.5	110	66	50 50	107 89
			Copper, Cu Nickel, Ni	mg/kg mg/kg	0.5 0.5	110 53	66 6.2	50 50 50	107 89 93
RH (Total Reco	werable Hydrocarbon	s) in Soil	Copper, Cu Nickel, Ni Lead, Pb	mg/kg mg/kg mg/kg	0.5 0.5 1	110 53 260	66 6.2 240 300	50 50 50 50 50	107 89 93 54 ⑤ 104
	· · · · · · · · · · · · · · · · · · ·	s) in Soil	Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn	mg/kg mg/kg mg/kg mg/kg	0.5 0.5 1 2	110 53 260 360	66 6.2 240 300 Meth	50 50 50 50 50 cod: ME-(AU	107 89 93 54 (5) 104)-[ENV]/N40
C Sample	Sample Number	s) in Soil	Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter	mg/kg mg/kg mg/kg Units	0.5 0.5 1 2 LOR	110 53 260 360 Result	66 6.2 240 300 Meth Original	50 50 50 50 50 50 mod: ME-(AU Spike	107 89 93 54 ⑤ 104)-[ENV]AN40 Recovery
C Sample	· · · · · · · · · · · · · · · · · · ·	s) in Soil	Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14	mg/kg mg/kg mg/kg Units mg/kg	0.5 0.5 1 2 LOR 20	110 53 260 360 Result 87	66 6.2 240 300 Meth Original 22	50 50 50 50 50 wod: ME-(AU Spike 40	107 89 93 54 (©) 104 I-[ENV]/AN40 Recovery ⁶ 161 (©)
C Sample	Sample Number	s) in Soil	Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28	mg/kg mg/kg mg/kg mg/kg Units mg/kg mg/kg	0.5 0.5 1 2 LOR 20 45	110 53 260 360 Result 87 290	66 6.2 240 300 Original 22 200	50 50 50 50 50 00d: ME-(AU Spike 40 40	107 89 93 54 © 104)-[ENV/[AN-10 Recovery ⁰ 161 © 232 ©
C Sample	Sample Number	s) in Soil	Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36	mg/kg mg/kg mg/kg mg/kg Units mg/kg mg/kg mg/kg	0.5 0.5 1 2 LOR 20 45 45	110 53 260 360 Result 87 290 320	66 6.2 240 300 Nielt Original 22 200 270	50 50 50 50 50 wod: ME-(AU Spike 40	107 89 93 54 (©) 104 I-[ENV]AN40 Recovery 161 (©)
C Sample	Sample Number	s) in Soil	Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C29-C36 TRH C37-C40	mg/kg mg/kg mg/kg mg/kg Units mg/kg mg/kg mg/kg mg/kg	0.5 0.5 1 2 LOR 20 45 45 45	110 53 260 360 Result 87 290 320 <100	66 6.2 240 300 itiletit Original 22 200 270 <100	50 50 50 50 50 00d: ME-(AU Spike 40 40	107 89 93 54 © 104)-[ENV[AN-10 Recovery 161 © 232 ©
C Sample	Sample Number	s) in Soil	Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C37-C40 TRH C10-C36 Total	mg/kg mg/kg mg/kg mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 0.5 1 2 LOR 20 45 45 45 100 110	110 53 260 360 Result 87 290 320 <100 690	66 6.2 240 300 Original 22 200 270 <100 480	50 50 50 50 50 50 50 50 60 50 60 60 60 60 60 60 60 60 60 60 60 60 60	107 89 93 54 ⊚ 104)-[ENV]AN-I0 Recovery ⁶ 161 ⊚ 232 ⊚ 124 -
C Sample	Sample Number		Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total (F bands)	mg/kg mg/kg mg/kg mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 0.5 1 2 LOR 20 45 45 45 100 110 210	110 53 260 360 Result 87 290 320 <100 690 720	66 6.2 240 300 Original 22 200 270 <100 480 550	50 50 50 50 50 50 50 50 50 50 50 50 40 40 40 40 - -	107 89 93 54 ⊚ 104 1-[ENV]AN-10 Recovery ⁶ 161 ⊚ 232 ⊚ 124 - -
C Sample	Sample Number	TRH F	Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16	mg/kg mg/kg mg/kg mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 0.5 1 2 LOR 20 45 45 100 110 210 25	110 53 260 360 Result 87 290 320 <100 690 720 98	66 6.2 240 300 Nie lf Original 22 200 270 <100 480 550 33	50 50 50 50 50 50 50 50 50 50 50 50 40 40 40 40 - - - 40	107 89 93 54 (a) 104 1-[ENV]AN-10 Recovery 161 (a) 232 (a) 124 - - - 163 (a)
C Sample	Sample Number		Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2)	mg/kg mg/kg mg/kg mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 0.5 1 2 20 45 45 100 110 210 25 25	110 53 260 360 Result 87 290 320 <100 690 720 98 98	66 6.2 240 300 Niell 22 200 270 <100 480 550 33 33	50 50 50 50 50 50 50 50 50 50 50 40 40 40 40 - - 40 -	107 89 93 54 ③ 104 1-(ENV)/AN40 Recovery 161 ④ 232 ③ 124 - - 163 ③ -
C Sample	Sample Number	TRH F	Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 0.5 1 2 20 45 45 100 110 210 25 25 90	110 53 260 360 Result 87 290 320 <100 690 720 98 98 450	66 6.2 240 300 Vriginal 22 200 270 <100 480 550 33 33 33 370	50 50 50 50 50 50 50 50 50 50 50 50 40 40 40 40 - - - 40	107 89 93 54 (a) 104 I-(ENV)/AN40 Recovery 161 (a) 232 (a) 124 - - 163 (a) - 196 (b)
IC Sample E272322.001	Sample Number	TRH F	Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2)	mg/kg mg/kg mg/kg mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 0.5 1 2 20 45 45 100 110 210 25 25	110 53 260 360 Result 87 290 320 <100 690 720 98 98	66 6.2 240 300 Vriginal 22 200 270 <100 480 550 33 33 33 370 140	50 50 50 50 50 50 50 50 50 50 40 40 40 40 - - 40 - 40	107 89 93 54 ⊚ 104 HENV AN40 Recovery 161 ⊚ 232 ⊚ 124 - - 163 ⊚ - 196 ⊚
C Sample E272322.001	Sample Number LB326362.004	TRH F Bands	Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C36 Total TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C34 (F3) TRH >C34-C40 (F4)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 0.5 1 2 20 45 45 100 110 210 25 25 90 120	110 53 260 360 Result 87 290 320 <100 690 720 98 98 98 450 180	66 6.2 240 300 Original 22 200 270 <100 480 550 33 33 33 370 140 Kleil	50 50 50 50 50 50 50 50 50 40 40 40 40 - - 40 - - 40 - - 40 -	107 89 93 54 ⊚ 104 HENV AN-10 Recovery 161 ⊚ 232 ⊚ 124 - - 163 ⊚ - 196 ⊚ - HENV AN-13
C Sample E272322.001 DC s in Soil C Sample	Sample Number LB326362.004 Sample Number	TRH F Bands	Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C34 (F3) TRH >C440 (F4)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 0.5 1 2 20 45 45 100 110 210 25 25 90 120 120	110 53 260 360 Result 87 290 320 <100 690 720 98 98 450 180 Result	66 6.2 240 300 Original 22 200 270 <100 480 550 33 33 370 140 Kleif Original	50 50 50 50 50 50 50 50 40 40 40 40 - - 40 - 40	107 89 93 54 (*) 104 HENVIAN-10 Recovery 161 (*) 232 (*) 124 - - 163 (*) - 196 (*) - - 196 (*) Recovery
C Sample E272322.001 DC s in Soil IC Sample	Sample Number LB326362.004	TRH F Bands Monocyclic	Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C36 Total (F bands) TRH >C10-C16 TRH >C10-C16 Naphthalene (F2) TRH >C10-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 0.5 1 2 20 45 45 100 110 210 25 25 90 120 LOR 0.1	110 53 260 360 Result 87 290 320 <100 690 720 98 98 450 180 Result 3.2	66 6.2 240 300 Original 22 200 270 <100 480 550 33 33 33 370 140 Kleif Original <0.1	50 50 50 50 50 50 50 50 40 40 40 - - 40 - 40	107 89 93 54 104 1-[ENV]AN-10 Recovery ⁶ 161 232 124 - - 163 - 196 - - 196 - - 196 65
C Sample E272322.001 DC s in Soil C Sample	Sample Number LB326362.004 Sample Number	TRH F Bands	Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C36 Total TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 0.5 1 2 20 45 45 100 110 210 25 25 90 120 LOR 0.1 0.1	110 53 260 360 Result 87 290 320 <100 690 720 98 98 450 180 Result 3.2 3.4	66 6.2 240 300 Nie ll 22 200 270 <100 480 550 33 33 33 370 140 Nie ll Criginal <0.1 <0.1	50 50 50 50 50 50 50 50 50 50 40 40 40 - - 40 - 40	107 89 93 54 104 HENVIAN40 Recovery 161 232 124 - - 163 - 196 - 196 - 196 65 67
C Sample E272322.001 DC s in Soil C Sample	Sample Number LB326362.004 Sample Number	TRH F Bands Monocyclic	Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C36 Total (F bands) TRH >C10-C16 TRH >C10-C16 Naphthalene (F2) TRH >C10-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 0.5 1 2 20 45 45 100 110 210 25 25 90 120 LOR 0.1	110 53 260 360 Result 87 290 320 <100 690 720 98 98 450 180 Result 3.2	66 6.2 240 300 Original 22 200 270 <100 480 550 33 33 33 370 140 Kleif Original <0.1	50 50 50 50 50 50 50 50 40 40 40 - - 40 - 40	107 89 93 54 ⊚ 104 HENV AN40 Recovery9 161 ® 232 @ 124 - - 163 @ - 196 @ - 196 @ - Secovery9 65
RH (Total Reco QC Sample E272322.001	Sample Number LB326362.004 Sample Number	TRH F Bands Monocyclic	Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C36 Total TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 0.5 1 2 20 45 45 100 110 210 25 25 90 120 LOR 0.1 0.1	110 53 260 360 Result 87 290 320 <100 690 720 98 98 450 180 Result 3.2 3.4	66 6.2 240 300 Nie ll 22 200 270 <100 480 550 33 33 33 370 140 Nie ll Criginal <0.1 <0.1	50 50 50 50 50 50 50 50 50 50 40 40 40 - - 40 - 40	107 89 93 54 ⊚ 104 HENV AN40 Recovery? 161 ⊚ 232 ⊚ 124 - - 163 ⊚ - 196 ⊚ - 196 ⊚ - Secovery? 65 67

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

									J)-[ENV]AN433
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE272322.001	LB326363.004	Polycyclic	Naphthalene (VOC)*	mg/kg	0.1	<0.1	<0.1	-	-
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	10.9	7.9	-	109
			d8-toluene (Surrogate)	mg/kg	-	9.2	7.2	-	92
			Bromofluorobenzene (Surrogate)	mg/kg	-	9.9	6.1	-	99
		Totals	Total BTEX*	mg/kg	0.6	21	<0.6	-	-
			Total Xylenes*	mg/kg	0.3	11	<0.3	-	-
	n Hydrocarbons in Sc								J)-[ENV]AN433
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE272322.001	LB326363.004		TRH C6-C10	mg/kg	25	64	<25	92.5	67
			TRH C6-C9	mg/kg	20	55	<20	80	67
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	10.9	7.9	-	109
			d8-toluene (Surrogate)	mg/kg	-	9.2	7.2	-	92
			Bromofluorobenzene (Surrogate)	mg/kg	-	9.9	6.1	-	99
		VPH F	Benzene (F0)	mg/kg	0.1	3.2	<0.1	-	-
		Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	43	<25	62.5	66

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- *** Indicates that both * and ** apply.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- ⁽⁷⁾ LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to relevant report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

#UNKNOWN!			- Tully		CUSTO	DDY & AI	NALYSIS RE	EQUEST		Page 1 of 1
SGS Environmental Services Unit 16, 33 Maddox Street Alexandria NSW 2015 Telephone No: (02) 85940400 Facsimile No: (02) 85940499 Email: au.samplerecelpt.sydney@sg			y Name: Developmen Address: Suite 7, 265-2 Thornleigh, N It Name: RAHABAR AL	271 Pennant SW 2120	Contraction of the	d		Purchase Order No: NA Results Required By: Re Telephone: 04 Facsimile: NA Email Results:	sults by COB 50 356 834 A sults@drm.l	9.V13 - Orchard Hills B 16 October (5-day) Itd AM@DRM.LTD
Relinquished By:	DILANKA PREN	IADASA Date/Time:	9/10/2	024 Courier Ref		QM7496	Received By:	12_		Date/Time 9/10/24 @ 5:10
Relinquished By:		Date/Time:					Received By:			Date/Time
Samples Intact: Yes/ No		Temperature: Ambient	chilled \$\$	⁴ C	105		Sample Cooler	Sealed: Yest No		Laboratory Quotation No: 1772515 and 1654186V2
Client Sample ID	Date Sampled	Lab Sample ID	WATER SOIL PRESERVATIVE ASS begs	Jar samples DRM1 TRH/ BTEXN/ PAH/ 8 Metals	DRM8 CL2T 8 Metals (Total)	DRM3A TRH/ BTEXN/ PAH/ OC/ PCB/ 8 Metals	РАН			COMMENTS
TP801 _ 0.3 - 0.5	9/10/2024	1	x	1		x		1 1111		
TP801 _ 0.8 - 0.9	9/10/2024	2	x	1	x					
TP802 _ 0.6 - 0.8	9/10/2024	3	×	1 X			SGS E	HS Sydney COC		
TP803 _ 0.1 - 0.3	9/10/2024	4	x	1	x			272259		
TP804 _ 0.4 - 0.6	9/10/2024	5	×	1 X						8
TP804 _ 0.6 - 0.7	9/10/2024		x	1						
TP805 _ 0.3 - 0.5	9/10/2024	6	х	1 X						
TP806 _ 0.2 - 0.4	9/10/2024	2	x	1		x	_		_	
TP807 _ 0.3 - 0.5	9/10/2024	8	х	1 X		1.	111			
TP807 _ 0.5 - 0.7	9/10/2024		×	1						
TP808 _ 0.3 - 0.5	9/10/2024	9	х	1 X						
DUP1	9/10/2024	10-	x	1	x					
DUP1A	9/10/2024	H	x	1	1.27	The second				Hold

SAMPLE RECEIPT ADVICE

CLIENT DETAILS	§	LABORATORY DETA	ILS
Contact Client Address	Rahabar Alam DEVELOPMENT RISK MANAGEMENT PTY LTD 37 MOUNT PLEASANT AVENUE NORMANHURST NSW 2076	Manager Laboratory Address	Shane McDermott SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	(Not specified)	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	rahabar_alam@drm.ltd	Email	au.environmental.sydney@sgs.com
Project	DRM P23.1039.V13-Orchard Hills	Samples Received	Wed 9/10/2024
Order Number	DRM P23.1039.V13	Report Due	Wed 16/10/2024
Samples	10	SGS Reference	SE272259

- SUBMISSION DETAILS

This is to confirm that 10 samples were received on Wednesday 9/10/2024. Results are expected to be ready by COB Wednesday 16/10/2024. Please quote SGS reference SE272259 when making enquiries. Refer below for details relating to sample integrity upon receipt.

Sample counts by matrix	10 Soil	Type of documentation received	COC
Date documentation received	9/10/2024	Samples received in good order	Yes
Samples received without headspace	Yes	Sample temperature upon receipt	4.8°C
Sample container provider	SGS	Turnaround time requested	Standard
Samples received in correct containers	Yes	Sufficient sample for analysis	Yes
Sample cooling method	Ice Bricks	Samples clearly labelled	Yes
Complete documentation received	Yes		

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS

3 Jars on Hold.

This document is the Company its General Conditions of Service accessible at issued by under www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety Unit 16 33 Maddox St PO Box 6432 Bourke Rd Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

SAMPLE RECEIPT ADVICE

- CLIENT DETAILS -

Client DEVELOPMENT RISK MANAGEMENT PTY LTD

Project DRM P23.1039.V13-Orchard Hills

SUMMAR'	Y OF ANALYSIS		1					
No.	Sample ID	OC Pesticides in Soil	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	PCBs in Soil	Total Recoverable Elements in Soil/Waste	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil
001	TP801_0.3-0.5	30	26	11	7	10	11	7
002	TP801_0.8-0.9	-	-	-	7	-	-	-
003	TP802_0.6-0.8	-	26	-	7	10	11	7
004	TP803_0.1-0.3	-	-	-	7	-	-	-
005	TP804_0.4-0.6	-	26	-	7	10	11	7
006	TP805_0.3-0.5	-	26	-	7	10	11	7
007	TP806 0.2-0.4	30	26	11	7	10	11	7
008	TP807_0.3-0.5	-	26	-	7	10	11	7
009	TP808_0.3-0.5	-	26	-	7	10	11	7
010	DUP1	-	-	-	7	-	-	-

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details .

Testing as per this table shall commence immediately unless the client intervenes with a correction .

SAMPLE RECEIPT ADVICE

- CLIENT DETAILS -

- SUMMARY OF ANALYSIS -

Client DEVELOPMENT RISK MANAGEMENT PTY LTD

Project DRM P23.1039.V13-Orchard Hills

		in Soil	Moisture Content
No.	Sample ID	Mercury in Soil	Moisture
001	TP801_0.3-0.5	1	1
002	TP801_0.8-0.9	1	1
003	TP802_0.6-0.8	1	1
004	TP803_0.1-0.3	1	1
005	TP804_0.4-0.6	1	1
006	TP805_0.3-0.5	1	1
007	TP806 0.2-0.4	1	1
008	TP807_0.3-0.5	1	1
009	TP808_0.3-0.5	1	1
010	DUP1	1	1

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details .

Testing as per this table shall commence immediately unless the client intervenes with a correction .

ACN 648 798 878 ABN 60 648 798 878 +61 450 715 562 <u>reports@drm.ltd</u> WWW.DRM.LTD